Questions marquées «generalized-linear-model»

Une généralisation de la régression linéaire permettant des relations non linéaires via une "fonction de liaison" et pour que la variance de la réponse dépende de la valeur prédite. (À ne pas confondre avec le «modèle linéaire général» qui étend le modèle linéaire ordinaire à la structure de covariance générale et à la réponse multivariée.)

88
Quand utiliser des GLM gamma?

La distribution gamma peut prendre une assez grande variété de formes et, étant donné le lien entre la moyenne et la variance à travers ses deux paramètres, elle semble appropriée pour traiter l'hétéroscédasticité dans des données non négatives, de manière à ce que les log ne vous faites pas sans...

78
Un exemple: régression LASSO utilisant glmnet pour les résultats binaires

Je commence à me familiariser avec l’utilisation de glmnetavec LASSO Regression, où mon résultat d’intérêt est dichotomique. J'ai créé un petit cadre de données fictif ci-dessous: age <- c(4, 8, 7, 12, 6, 9, 10, 14, 7) gender <- c(1, 0, 1, 1, 1, 0, 1, 0, 0) bmi_p <- c(0.86, 0.45, 0.99,...

57
Pourquoi la transformation de racine carrée est-elle recommandée pour les données de comptage?

Il est souvent recommandé de prendre la racine carrée lorsque vous avez des données de comptage. (Pour des exemples sur CV, voir la réponse de @ HarveyMotulsky ici ou celle de @ whuber ici .) Par contre, lors de l'ajustement d'un modèle linéaire généralisé avec une variable de réponse distribuée...

46
Interprétation du prédicteur et / ou de la réponse transformé par log

Je me demande si cela fait une différence d'interprétation si seules les variables dépendantes, indépendantes et dépendantes, ou uniquement les variables indépendantes sont transformées par un journal. Considérons le cas de log(DV) = Intercept + B1*IV + Error Je peux interpréter l'IV comme...