Récemment, j'ai lu sur l'apprentissage en profondeur et je suis confus sur les termes (ou dire technologies). Quelle est la différence entre Réseaux de neurones convolutifs (CNN), Machines Boltzmann restreintes (RBM) et Auto-encodeurs?
Les réseaux de neurones convolutifs sont un type de réseau de neurones dans lequel seuls des sous-ensembles de connexions possibles entre les couches existent pour créer des régions qui se chevauchent. Ils sont couramment utilisés pour les tâches visuelles.
Récemment, j'ai lu sur l'apprentissage en profondeur et je suis confus sur les termes (ou dire technologies). Quelle est la différence entre Réseaux de neurones convolutifs (CNN), Machines Boltzmann restreintes (RBM) et Auto-encodeurs?
Je suis en train de faire le tutoriel Udacity Deep Learning. Dans la leçon 3, ils parlent d'une convolution 1x1. Cette convolution 1x1 est utilisée dans Google Inception Module. J'ai du mal à comprendre ce qu'est une convolution 1x1. J'ai aussi vu ce post de Yann Lecun. Quelqu'un pourrait-il bien...
Au cours des dernières années, les réseaux de neurones convolutionnels (ou peut-être les réseaux de neurones profonds en général) sont devenus de plus en plus profonds, avec des réseaux à la pointe de la technologie allant de 7 couches ( AlexNet ) à 1 000 couches ( réseaux résiduels) en 4 années....
Quelqu'un peut-il expliquer ce qu'est une couche de pooling maximum global et pourquoi et quand l'utilisons-nous pour la formation d'un réseau de neurones? Ont-ils un avantage sur la couche de pooling
Au cours des dernières années, les réseaux de neurones convolutifs (CNN) sont devenus le nec plus ultra en matière de reconnaissance d’objets en vision par ordinateur. En règle générale, un CNN se compose de plusieurs couches convolutives, suivies de deux couches entièrement connectées. L'intuition...
J'essaie de comprendre la partie convolution des réseaux de neurones convolutionnels. En regardant la figure suivante: Je n'ai aucun problème à comprendre la première couche de convolution où nous avons 4 noyaux différents (de taille ), que nous convolrons avec l'image d'entrée pour obtenir 4...
J'ai découvert qu'Imagenet et d'autres grands réseaux CNN utilisent des couches de normalisation de réponse locale. Cependant, je ne peux pas trouver autant d'informations à leur sujet. Quelle est leur importance et quand doivent-ils être utilisés? De
Je n'ai pas de formation en vision par ordinateur. Pourtant, lorsque je lis des articles et des articles sur le traitement d'images et les réseaux de neurones convolutionnels, je suis constamment confronté au terme translation invariance, ou translation invariant. Ou j'ai lu beaucoup que...
Quelle est la différence entre les termes "noyau" et "filtre" dans le contexte des réseaux de neurones à
Je crée un réseau de neurones à convolution (CNN) dans lequel j'ai une couche de convolution suivie par une couche de mise en commun et je souhaite appliquer la suppression pour réduire le surajustement. J'ai le sentiment que la couche de suppression devrait être appliquée après la couche de mise...
Quelqu'un a-t-il déjà vu des publications sur la formation préalable au réseau de neurones à convolution profonde? Je n'ai vu que de la pré-formation non supervisée dans les machines à codeur automatique ou à boltzman
Contexte d'introduction Au sein d'un réseau neuronal convolutionnel, nous avons généralement une structure / un flux général qui ressemble à ceci: image d'entrée (c'est-à-dire un vecteur 2D x) (La 1ère couche convolutionnelle (Conv1) commence ici ...) convoluez un ensemble de filtres ( w1) le long...
J'ai travaillé sur un problème de régression où l'entrée est une image et l'étiquette est une valeur continue entre 80 et 350. Les images sont de certains produits chimiques après qu'une réaction ait lieu. La couleur qui apparaît indique la concentration d'un autre produit chimique qui reste, et...
Je lisais l'article ImageNet Classification with Deep Convolutional Neural Networks et dans la section 3, ils expliquaient l'architecture de leur Convolutional Neural Network, ils expliquaient comment ils préféraient utiliser: non linéarité non saturanteF( x ) = m a x ( 0 , x )...
Je ne comprends pas la raison pour laquelle nous normalisons l'image pour CNN par (image - mean_image)?
Je vais expliquer mon problème avec un exemple. Supposons que vous souhaitiez prédire le revenu d'un individu en fonction de certains attributs: {âge, sexe, pays, région, ville}. Vous avez un ensemble de données de formation comme ça train <- data.frame(CountryID=c(1,1,1,1, 2,2,2,2, 3,3,3,3),...
J'entraîne un réseau neuronal simple sur l'ensemble de données CIFAR10. Après un certain temps, la perte de validation a commencé à augmenter, tandis que la précision de validation augmente également. La perte de test et la précision du test continuent de s'améliorer. Comment est-ce possible? Il...
Lorsque j'utilise GAM, cela me donne un DF résiduel de (dernière ligne du code). Qu'est-ce que ça veut dire? Au-delà de l'exemple GAM, en général, le nombre de degrés de liberté peut-il être un nombre non entier?26.626.626.6 > library(gam) > summary(gam(mpg~lo(wt),data=mtcars)) Call:...
Je souhaite utiliser le deep learning dans mon projet. J'ai parcouru quelques articles et une question m'est venue: y a-t-il une différence entre le réseau neuronal à convolution et l'apprentissage en profondeur? Ces choses sont-elles les mêmes ou ont-elles des différences majeures, et quelle est...
Je me demandais, pourquoi est-il si important d'avoir un apprentissage automatique fondé sur des principes / théorique? D'un point de vue personnel en tant qu'humain, je peux comprendre pourquoi l'apprentissage automatique fondé sur des principes serait important: les humains aiment comprendre ce...