Questions marquées «loss-functions»

Une fonction utilisée pour quantifier la différence entre les données observées et les valeurs prédites selon un modèle. La minimisation des fonctions de perte est un moyen d'estimer les paramètres du modèle.

36
Apprentissage automatique: devrais-je utiliser une perte d'entropie croisée ou d'entropie croisée binaire pour les prédictions binaires?

Tout d'abord, j'ai réalisé que si je devais effectuer des prédictions binaires, je devais créer au moins deux classes en effectuant un encodage à chaud. Est-ce correct? Cependant, l'entropie croisée binaire est-elle réservée aux prédictions avec une seule classe? Si je devais utiliser une perte...

29
Comment gérer les données hiérarchiques / imbriquées dans l'apprentissage automatique

Je vais expliquer mon problème avec un exemple. Supposons que vous souhaitiez prédire le revenu d'un individu en fonction de certains attributs: {âge, sexe, pays, région, ville}. Vous avez un ensemble de données de formation comme ça train <- data.frame(CountryID=c(1,1,1,1, 2,2,2,2, 3,3,3,3),...

25
Gradient de perte de charnière

J'essaie d'implémenter une descente de gradient de base et je la teste avec une fonction de perte de charnière, c'est-à-dire . Cependant, je suis confus quant au gradient de la perte de charnière. J'ai l'impression que c'estlhinge=max(0,1−y x⋅w)lhinge=max(0,1−y x⋅w)l_{\text{hinge}} = \max(0,1-y\...