J'ai un très grand ensemble de données et il manque environ 5% de valeurs aléatoires. Ces variables sont corrélées entre elles. L'exemple de jeu de données R suivant n'est qu'un exemple de jouet avec des données corrélées factices. set.seed(123) # matrix of X variable xmat <- matrix(sample(-1:1,...
12
Comment effectuer l'imputation de valeurs dans un très grand nombre de points de données?
r
random-forest
missing-data
data-imputation
multiple-imputation
large-data
definition
moving-window
self-study
categorical-data
econometrics
standard-error
regression-coefficients
normal-distribution
pdf
lognormal
regression
python
scikit-learn
interpolation
r
self-study
poisson-distribution
chi-squared
matlab
matrix
r
modeling
multinomial
mlogit
choice
monte-carlo
indicator-function
r
aic
garch
likelihood
r
regression
repeated-measures
simulation
multilevel-analysis
chi-squared
expected-value
multinomial
yates-correction
classification
regression
self-study
repeated-measures
references
residuals
confidence-interval
bootstrap
normality-assumption
resampling
entropy
cauchy
clustering
k-means
r
clustering
categorical-data
continuous-data
r
hypothesis-testing
nonparametric
probability
bayesian
pdf
distributions
exponential
repeated-measures
random-effects-model
non-independent
regression
error
regression-to-the-mean
correlation
group-differences
post-hoc
neural-networks
r
time-series
t-test
p-value
normalization
probability
moments
mgf
time-series
model
seasonality
r
anova
generalized-linear-model
proportion
percentage
nonparametric
ranks
weighted-regression
variogram
classification
neural-networks
fuzzy
variance
dimensionality-reduction
confidence-interval
proportion
z-test
r
self-study
pdf