Questions marquées «optimization»

27
Les degrés de liberté peuvent-ils être un nombre non entier?

Lorsque j'utilise GAM, cela me donne un DF résiduel de (dernière ligne du code). Qu'est-ce que ça veut dire? Au-delà de l'exemple GAM, en général, le nombre de degrés de liberté peut-il être un nombre non entier?26.626.626.6 > library(gam) > summary(gam(mpg~lo(wt),data=mtcars)) Call:...

26
Quelles sont les notations classiques en statistique, algèbre linéaire et apprentissage automatique? Et quels sont les liens entre ces notations?

Lorsque nous lisons un livre, la compréhension des notations joue un rôle très important dans la compréhension du contenu. Malheureusement, différentes communautés ont des conventions de notation différentes pour la formulation du modèle et le problème d'optimisation. Quelqu'un pourrait-il résumer...

25
Pour les problèmes convexes, le gradient en descente de gradient stochastique (SGD) pointe-t-il toujours vers la valeur extrême globale?

Étant donné une fonction de coût convexe, en utilisant SGD pour l'optimisation, nous aurons un gradient (vecteur) à un certain point au cours du processus d'optimisation. Ma question est, étant donné le point sur le convexe, le gradient ne pointe-t-il que vers la direction dans laquelle la fonction...

23
Descente de coordonnées vs descente de gradient

Je me demandais quels sont les différents cas d'utilisation pour les deux algorithmes, Descente de coordonnées et Descente de gradient . Je sais que la descente de coordonnées a des problèmes avec les fonctions non lisses mais elle est utilisée dans des algorithmes populaires comme SVM et LASSO. La...

22
Comment garantir les propriétés de la matrice de covariance lors de l'ajustement d'un modèle normal multivarié en utilisant le maximum de vraisemblance?

Supposons que j'ai le modèle suivant yi=f(xi,θ)+εiyi=f(xi,θ)+εiy_i=f(x_i,\theta)+\varepsilon_i où yi∈RKyi∈RKy_i\in \mathbb{R}^K , xixix_i est un vecteur de variables explicatives, θθ\theta est les paramètres de la fonction non linéaire fff et εi∼N(0,Σ)εi∼N(0,Σ)\varepsilon_i\sim N(0,\Sigma) , où...