Questions marquées «convex-optimization»

L'optimisation convexe est un cas particulier d'optimisation mathématique où la région réalisable est convexe et l'objectif est de minimiser une fonction convexe ou de maximiser une fonction concave.

77
Existe-t-il un solveur de programmation non linéaire de haute qualité pour Python?

J'ai plusieurs problèmes d'optimisation globale non convexe difficiles à résoudre. Actuellement, j'utilise la boîte à outils Optimization de MATLAB (en particulier, fmincon()avec algorithm = 'sqp'), ce qui est assez efficace . Cependant, la majeure partie de mon code est en Python et j'aimerais...

18
Distance euclidienne en octave

Je voudrais savoir s'il existe un moyen rapide de calculer la distance euclidienne de deux vecteurs en octave. Il semble qu'il n'y ait pas de fonction spéciale pour cela, alors devrais-je simplement utiliser la formule avec

11
CVXOPT VS. OpenOpt

CVXOPT: http://abel.ee.ucla.edu/cvxopt/index.html OpenOpt: http://openopt.org/Welcome Quelle est la relation entre eux? Quels sont leurs avantages / inconvénients, respectivement? BTW, existe-t-il une autre bibliothèque d'optimisation convexe à usage général de haute qualité pour Python / C ++ à...

9
Comment tenter intelligemment d'exclure la convexité?

Je veux minimiser une fonction objectif compliquée, et je ne sais pas si elle est convexe. Existe-t-il un bon algorithme qui tente de prouver qu'il n'est pas convexe? Bien sûr, l'algorithme pourrait ne pas le prouver, auquel cas je ne saurais pas s'il est convexe ou non, et c'est OK; Je veux juste...

9
Effort de calcul des algorithmes

O:=minx∈Rnf(x).O:=minx∈Rnf(x).\mathcal{O} := \min_{x \in \mathbb{R}^n} f(x).xoptxoptx_\text{opt}x0x0x_0xopt.xopt.x_\text{opt}.xxxϵ−ϵ−\epsilon-OO\mathcal{O}||x−xopt||2||x0−xopt||2≤ϵ.||x−xopt||2||x0−xopt||2≤ϵ.\begin{equation} \frac{||x - x_{\text{opt}}||_2}{||x_0 - x_\text{opt}||_2} \leq \epsilon....