Questions marquées «ensemble»

Dans l'apprentissage automatique, les méthodes d'ensemble combinent plusieurs algorithmes pour effectuer une prédiction. L'ensachage, la suralimentation et l'empilage en sont quelques exemples.

29
R: Random Forest lançant NaN / Inf dans l'erreur «appel de fonction étrangère» malgré l'absence de NaN dans l'ensemble de données [fermé]

Fermé. Cette question est hors sujet . Il n'accepte pas actuellement de réponses. Voulez-vous améliorer cette question? Mettez à jour la question afin qu'elle soit sur le sujet pour la validation croisée. Fermé il y a 2 ans . J'utilise caret pour exécuter une forêt aléatoire validée de façon...

22
Sur la «force» des apprenants faibles

J'ai plusieurs questions étroitement liées concernant les apprenants faibles dans l'apprentissage d'ensemble (par exemple, le renforcement). Cela peut sembler stupide, mais quels sont les avantages d'utiliser des apprenants faibles plutôt que des apprenants forts? (par exemple, pourquoi ne pas...

21
Modèles empilables / assemblables avec caret

Je me retrouve souvent à former plusieurs modèles prédictifs différents en utilisant caretR. Je vais tous les former sur les mêmes plis de validation croisée, en utilisant caret::: createFolds, puis en choisissant le meilleur modèle basé sur une erreur de validation croisée. Cependant, la...