Tranchez l'âge à Python
>>> pd.cut(np.array([.2, 1.4, 2.5, 6.2, 9.7, 2.1]), 3, retbins=True)
([(0.191, 3.367], (0.191, 3.367], (0.191, 3.367], (3.367, 6.533], (6.533, 9.7], (0.191, 3.367]]
Categories (3, object): [(0.191, 3.367] < (3.367, 6.533] < (6.533, 9.7]],
array([ 0.1905 , 3.36666667, 6.53333333, 9.7 ]))
>>> pd.cut(np.array([.2, 1.4, 2.5, 6.2, 9.7, 2.1]), 3, labels=["good","medium","bad"])
[good, good, good, medium, bad, good]
Categories (3, object): [good < medium < bad]
>>> pd.cut(np.ones(5), 4, labels=False)
array([1, 1, 1, 1, 1], dtype=int64)
Brainy Beetle