Obtenez une fonction de valeur minimale avec une génération dans Python

import math

def noisy_func(X):
    x, y = X
    return (math.exp(math.sin(50*x)) +
            math.sin(60*math.exp(y)) +
            math.sin(70*math.sin(x)) +
            math.sin(math.sin(80*y)) -
            math.sin(10*(x + y)) +
            0.25*(math.pow(x, 2) +
            math.pow(y, 2)))


import frigidum
import numpy as np
import random

def random_start():
    return np.random.random( 2 ) * 4

def random_small_step(x):
    if np.random.random() < .5:
        return np.clip( x + np.array( [0, 0.02 * (random.random() - .5)] ), -4,4)
    else:
        return np.clip( x + np.array( [0.02 * (random.random() - .5), 0] ), -4,4)


def random_big_step(x):
    if np.random.random() < .5:
        return np.clip( x + np.array( [0, 0.5 * (random.random() - .5)] ), -4,4)
    else:
        return np.clip( x + np.array( [0.5 * (random.random() - .5), 0] ), -4,4)

local_opt = frigidum.sa(random_start=random_start, 
                        neighbours=[random_small_step, random_big_step], 
                        objective_function=noisy_func, 
                        T_start=10**2, 
                        T_stop=0.00001, 
                        repeats=10**4, 
                        copy_state=frigidum.annealing.copy)
Nasty Narwhal