Commençons par un problème de forme
avec un ensemble de conditions aux limites données ( Dirichlet , Neumann , Robin , Periodic , Bloch-Periodic ). Cela correspond à la recherche des valeurs propres et des vecteurs propres pour un opérateur , sous une géométrie et des conditions aux limites. On peut obtenir un problème comme celui-ci en acoustique, électromagnétisme, élastodynamique, mécanique quantique, par exemple.
Je sais que l'on peut discrétiser l'opérateur en utilisant différentes méthodes, par exemple, les méthodes de différences finies pour obtenir
or using, Finite Element Methods to obtain
In one case getting an eigenvalue problem and a generalized eigenvalue problem in the other. After obtaining the discrete version of the problem one uses a solver for the eigenvalue problem.
Some thoughts
- The method of Manufactured Solutions is not useful in this case since there is no source term to balance the equation.
One can verify that the matrices and are well captured using a frequency domain problem with source term, e.g.
instead of
But this will not check the solver issues.
Maybe, one can compare solutions for different methods, like FEM and FDM.
Question
What is the way to verify the solutions (eigenvalue-eigenvector pairs) for discretization schemes due to numerical methods like FEM and FDM for eigenvalue problems?
la source
Réponses:
I realize this question is old, but I just saw it and find it interesting. In the past, I have followed the suggestions found in this question's comments, coupled with some slightly more complicated cases that I'm familiar with in the literature (Orr--Sommerfeld is always handy).
However, I'm also aware of some literature on the inhomogeneous eigenvalue problems that arise when constructing a manufactured solution. There is some discussion of such problems here: DOI: 10.1016. These authors also suggest a so-called Method of Manufactured Cross Sections (MXS, I guess) to avoid this issue altogether, which I won't pretend to understand at the moment, but could very well be useful.
la source
For the second-order derivative (and the Laplacian on simple domains), expressions for the discrete eigenpairs (i.e. after discretization) are available. For example, for finite-difference, the eigenpairs are listed here.
Expression for the eigenpairs with a finite-element discretization can be found similarly (for P1 and P2 discretization).
la source