Comment fonctionne l' astuce de reparamétrage pour les autoencodeurs variationnels (VAE)? Existe-t-il une explication simple et intuitive sans simplifier les calculs sous-jacents? Et pourquoi avons-nous besoin du
Les méthodes bayésiennes variationnelles approchent les intégrales insolubles trouvées dans l'inférence bayésienne et l'apprentissage automatique. Principalement, ces méthodes servent l'un des deux objectifs suivants: approximer la distribution postérieure ou limiter la probabilité marginale des données observées.
Comment fonctionne l' astuce de reparamétrage pour les autoencodeurs variationnels (VAE)? Existe-t-il une explication simple et intuitive sans simplifier les calculs sous-jacents? Et pourquoi avons-nous besoin du
Je pense que j'ai une idée générale de VI et de MCMC, y compris les différentes saveurs de MCMC telles que l’échantillonnage de Gibbs, Metropolis Hastings, etc. Ce document fournit un magnifique exposé des deux méthodes. J'ai les questions suivantes: Si je souhaite faire l'inférence bayésienne,...
J'ai lu quelque part que la méthode variationnelle de Bayes est une généralisation de l'algorithme EM. En effet, les parties itératives des algorithmes sont très similaires. Afin de tester si l'algorithme EM est une version spéciale des Bayes variationnels, j'ai essayé ce qui suit: YYY est des...
dans presque tous les exemples de code que j'ai vus sur un VAE, les fonctions de perte sont définies comme suit (c'est du code tensorflow, mais j'ai vu des choses similaires pour theo, torch etc. C'est aussi pour un convnet, mais ce n'est pas trop pertinent non plus , affecte uniquement les axes...
Selon ceci et cette réponse, les auto-encodeurs semblent être une technique qui utilise des réseaux de neurones pour réduire les dimensions. Je voudrais en outre savoir ce qu'est un autoencodeur variationnel (ses principales différences / avantages par rapport à un autoencodeur "traditionnel") et...
Je comprends la structure de base de l'autoencodeur variationnel et de l'autoencodeur normal (déterministe) et les mathématiques qui les sous-tendent, mais quand et pourquoi préférerais-je un type d'autoencodeur à l'autre? Tout ce que je peux penser, c'est que la distribution préalable des...
J'étudie ce tutoriel sur les encodeurs automatiques variationnels de Carl Doersch . Dans la deuxième page, il indique: L'un des frameworks les plus populaires est le Variational Autoencoder [1, 3], le sujet de ce tutoriel. Les hypothèses de ce modèle sont faibles et la formation est rapide par...
Je lis sur l'inférence bayésienne et je suis tombé sur l'expression "l'intégration numérique de la probabilité marginale est trop chère" Je n'ai pas de formation en mathématiques et je me demandais ce que signifie exactement cher ici? Est-ce juste en termes de puissance de calcul ou y a-t-il...
À ma compréhension (très modeste) de l'inférence variationnelle, on essaie d'approximer une distribution inconnue ppp en trouvant une distribution qqq qui optimise ce qui suit: KL(p||q)=∑xp(x)logp(x)q(x)KL(p||q)=∑xp(x)logp(x)q(x)KL (p||q) = \sum\limits_{x} p(x)log \frac {p(x)}{q(x)} Chaque fois que...
Je lis sur les Bayes variationnels, et si je comprends bien, cela revient à l'idée que vous approximez (où z sont les variables latentes de votre modèle et les données observées) avec une fonction , en faisant l'hypothèse que factorise comme où est un sous-ensemble des variables latentes. On peut...
J'ai implémenté une VAE et j'ai remarqué deux implémentations différentes en ligne de la divergence gaussienne KL univariée simplifiée. La divergence d' origine que par ici est Si nous supposons que notre a priori est une unité gaussienne, c'est-à-dire et , cela se simplifie jusqu'à Et voici où...
Quelle est la différence entre l' encodage bayésien variationnel automatique et la rétropropagation stochastique pour les modèles génératifs profonds ? L'inférence dans les deux méthodes conduit-elle aux mêmes résultats? Je ne suis au courant d'aucune comparaison explicite entre les deux méthodes,...
J'essaie d'implémenter le modèle de mélange gaussien avec l'inférence variationnelle stochastique, à la suite de cet article . C'est le pgm du mélange gaussien. Selon l'article, l'algorithme complet d'inférence variationnelle stochastique est: Et je suis encore très confus de la méthode pour...
Un autoencodeur variationnel (VAE) fournit un moyen d'apprendre la distribution de probabilité reliant une entrée à sa représentation latente . En particulier, le codeur e mappe une entrée x à une distribution sur z . Un encodeur typique affichera des paramètres (\ mu, \ sigma) = e (x) ,...
Je travaille sur un problème d'inférence de grande dimension (environ 2000 paramètres de modèle) pour lequel nous sommes capables d'effectuer de manière robuste une estimation MAP en trouvant le maximum global du log-postérieur en utilisant une combinaison d'optimisation basée sur un gradient et un...
Après avoir fait quelques recherches sur le sujet, j'ai remarqué un déficit surprenant de packages d'inférence et de bibliothèques qui reposent sur des méthodes de transmission de messages ou d'optimisation pour Python et R. À ma connaissance, ces méthodes sont extrêmement utiles. Par exemple, pour...