Quelles sont les façons possibles de visualiser de grands états intriqués?

9

Quelles sont les visualisations les plus importantes utilisées pour représenter de grands états intriqués et dans quel contexte sont-ils le plus souvent appliqués?

Quels sont leurs avantages et inconvénients?

SLesslyTall
la source

Réponses:

3

Dans la vérification de l'intrication authentique d'ordre élevé, les graphiques suivants représentent les qudits enchevêtrés

État 10 quits états du graphe qudit


Dans une réponse à 'Alternative à la sphère de Bloch pour représenter un seul qubit' @Rob fait référence à la représentation Majorana, à l'espace Hiltr qutrit et à la mise en œuvre RMN des portes qutrit qui stipule

La représentation Majorana pour systèmes a trouvé des applications étendues telles que la détermination de phase géométrique de tours, ce qui représente spinors par points de représentation géométrique états intriqués multi-qubit, statistiques des systèmes dynamiques quantiques chaotiques et la caractérisation de la lumière polarisée.sNN

Le papier inclut également ce style de représentation pour qudits

représentation majorana


J'ai récemment demandé comment représenter visuellement un qubyte . Dans les commentaires de la réponse de @ DaftWullie, j'ai proposé un 8-cube ( graphique hypercube ):

8 cubes

Un n-cube peut être projeté à l'intérieur d'un polygone 2n-gonal régulier par une projection orthogonale asymétrique

Cette méthode semble permettre de visualiser la complexité de l'intrication de manière évolutive.

meowzz
la source
1
Pourquoi diable quelqu'un at-il voté contre? J'ai voté pour le neutraliser.
user1271772
1
Je t'ai voté. Je partage votre douleur
rrtucci
1
Ces images sont complètement informatives. Que visualisent-ils et comment?
Norbert Schuch
3

Le ZX-calcul est un langage graphique pour traiter des cartes linéaires de qubits, et il peut notamment représenter n'importe quel état de qubits. Fondamentalement, les diagrammes ZX sont des réseaux tenseurs, mais il existe un ensemble supplémentaire de règles de réécriture qui vous permet de les manipuler graphiquement. Sur la page Wikipédia, vous pouvez trouver un exemple de la façon de prouver qu'un certain circuit quantique implémente effectivement un état GHZ. Il a également été utilisé pour raisonner sur l'informatique quantique basée sur la mesure, car il vous permet de raisonner directement sur les états des graphiques.

Dans PyZX (clause de non-responsabilité: je suis un développeur principal), nous utilisons la réécriture automatique des graphiques pour raisonner et prouver les résultats avec des diagrammes ZX impliquant des milliers de sommets, et nous pouvons visualiser les circuits et les états sur des dizaines de qubits.

John
la source
2

Ma vision personnelle:

Oui, de grands états intriqués peuvent être visualisés en utilisant des réseaux bayésiens quantiques. Voir

D'autres personnes conseilleront probablement d'utiliser des réseaux de tenseurs au lieu de réseaux bayésiens quantiques. Cela soulève la question: comment les réseaux bayésiens quantiques et les réseaux de tenseurs se comparent-ils? J'y ai pensé et rassemblé mes pensées dans ce billet de blog.

Premières lignes de l'article de blog:

On me pose souvent la question de savoir quelle est la différence entre les réseaux de tenseurs et les réseaux bayésiens quantiques, et y a-t-il un avantage à les utiliser l'un par rapport à l'autre.

En ce qui concerne les probabilités, je préfère les réseaux bayésiens quantiques car les réseaux b sont un moyen plus naturel d'exprimer les probabilités (et les amplitudes de probabilité) tandis que les réseaux tenseurs peuvent être utilisés pour désigner de nombreuses quantités physiques autres que les probabilités afin qu'ils ne soient pas faits sur mesure pour le travail en tant que b les filets le sont. Permettez-moi d'expliquer plus en détail pour les personnes techniquement inclinées.

On peut considérer l'intrication bipartite des deux côtés d'une partition, d'un réseau bayésien quantique. On peut écrire de belles inégalités pour de tels enchevêtrements bipartites. Voir, par exemple, Entanglement Polygon Inequality in Qubit Systems, Xiao-Feng Qian, Miguel A. Alonso, Joseph H. Eberly .

On peut également essayer de définir une mesure de l'intrication n-partite pour n> 2, où n est le nombre de nœuds d'un réseau bayésien quantique. Voir, par exemple, Verifying Genuine High-Order Empanglement, Che-Ming Li, Kai Chen, Andreas Reingruber, Yueh-Nan Chen, Jian-Wei Pan .

rrtucci
la source