J'ai effectué une analyse en composantes principales de six variables A
Je suis juste curieux - y a-t-il un moyen de faire ça "à l'envers"? Disons que je choisis une combinaison linéaire de ces variables - par exemple A + 2 B + 5 C
J'ai effectué une analyse en composantes principales de six variables A
Je suis juste curieux - y a-t-il un moyen de faire ça "à l'envers"? Disons que je choisis une combinaison linéaire de ces variables - par exemple A + 2 B + 5 C
Réponses:
Si nous partons du principe que toutes les variables ont été centrées (pratique standard en ACP), alors la variance totale dans les données n'est que la somme des carrés:
T = ∑ i ( A 2 i + B 2 i + C 2 i + D 2 i + E 2 i + F 2 i )
Ceci est égal à la trace de la matrice de covariance des variables, qui est égale à la somme des valeurs propres de la matrice de covariance. C'est la même quantité dont PCA parle en termes d '«explication des données» - c'est-à-dire que vous voulez que vos PC expliquent la plus grande proportion des éléments diagonaux de la matrice de covariance. Maintenant, si nous en faisons une fonction objective pour un ensemble de valeurs prédites comme ceci:
S = Σ i ( [ A i - A i ] 2 + ⋯ + [ F i - F i ] 2 )
Ensuite , les premiers composants principaux Minimise SS parmi tous les rang 1 valeurs prédites ( A i , ... , F i )(A^i,…,F^i) . Il semblerait donc que la quantité appropriée que vous recherchez soit
P = 1 - ST
Z i = 1√30 Ai+2√30 Bi+5√30 Ci
Ensuite, nous multiplions les scores par le vecteur de poids pour obtenir notre prédiction de rang 1.
( A i B i C i D i E i F i ) = Z i × ( 1√30 2√30 5√30 000)
Then we plug these estimates into SS calculate PP . You can also put this into matrix norm notation, which may suggest a different generalisation. If we set OO as the N×qN×q matrix of observed values of the variables (q=6q=6 in your case), and EE as a corresponding matrix of predictions. We can define the proportion of variance explained as:
||O||22−||O−E||22||O||22
Where ||.||2||.||2 is the Frobenius matrix norm. So you could "generalise" this to be some other kind of matrix norm, and you will get a difference measure of "variation explained", although it won't be "variance" per se unless it is sum of squares.
la source
This question can be understood in two different ways, leading to two different answers.
A linear combination corresponds to a vector, which in your example is [1,2,5,0,0,0][1,2,5,0,0,0] . This vector, in turn, defines an axis in the 6D space of the original variables. What you are asking is, how much variance does projection on this axis "describe"? The answer is given via the notion of "reconstruction" of original data from this projection, and measuring the reconstruction error (see Wikipedia on Fraction of variance unexplained). Turns out, this reconstruction can be reasonably done in two different ways, yielding two different answers.
Approach #1
Let XX be the centered dataset (nn rows correspond to samples, dd columns correspond to variables), let ΣΣ be its covariance matrix, and let ww be a unit vector from RdRd . The total variance of the dataset is the sum of all dd variances, i.e. the trace of the covariance matrix: T=tr(Σ)T=tr(Σ) . The question is: what proportion of TT does ww describe? The two answers given by @todddeluca and @probabilityislogic are both equivalent to the following: compute projection XwXw , compute its variance and divide by TT : R2first=Var(Xw)T=w⊤Σwtr(Σ).
This might not be immediately obvious, because e.g. @probabilityislogic suggests to consider the reconstruction Xww⊤Xww⊤ and then to compute ‖X‖2−‖X−Xww⊤‖2‖X‖2,
Approach #2
Okay. Now consider a following example: XX is a d=2d=2 dataset with covariance matrix Σ=(10.990.991)
The total variance is T=2T=2 . The variance of the projection onto ww (shown in red dots) is equal to 11 . So according to the above logic, the explained variance is equal to 1/21/2 . And in some sense it is: red dots ("reconstruction") are far away from the corresponding blue dots, so a lot of the variance is "lost".
On the other hand, the two variables have 0.990.99 correlation and so are almost identical; saying that one of them describes only 50%50% of the total variance is weird, because each of them contains "almost all the information" about the second one. We can formalize it as follows: given projection XwXw , find a best possible reconstruction Xwv⊤Xwv⊤ with vv not necessarily the same as ww , and then compute the reconstruction error and plug it into the expression for the proportion of explained variance: R2second=‖X‖2−‖X−Xwv⊤‖2‖X‖2,
It is a matter of straightforward algebra to use regression solution for vv to find that the whole expression simplifies to R2second=‖Σw‖2w⊤Σw⋅tr(Σ).
Note that if (and only if) ww is one of the eigenvectors of ΣΣ , i.e. one of the principal axes, with eigenvalue λλ (so that Σw=λwΣw=λw ), then both approaches to compute R2R2 coincide and reduce to the familiar PCA expression R2PCA=R2first=R2second=λ/tr(Σ)=λ/∑λi.
PS. See my answer here for an application of the derived formula to the special case of ww being one of the basis vectors: Variance of the data explained by a single variable.
Appendix. Derivation of the formula for R2secondR2second
Finding vv minimizing the reconstruction ‖X−Xwv⊤‖2∥X−Xwv⊤∥2 is a regression problem (with XwXw as univariate predictor and XX as multivariate response). Its solution is given by v⊤=((Xw)⊤(Xw))−1(Xw)⊤X=(w⊤Σw)−1w⊤Σ.
Next, the R2R2 formula can be simplified as R2=‖X‖2−‖X−Xwv⊤‖2‖X‖2=‖Xwv⊤‖2‖X‖2
Plugging now the equation for vv , we obtain for the numerator: ‖Xwv⊤‖2=tr(Xwv⊤(Xwv⊤)⊤)=tr(Xww⊤ΣΣww⊤X⊤)/(w⊤Σw)2=tr(w⊤ΣΣw)/(w⊤Σw)=‖Σw‖2/(w⊤Σw).
The denominator is equal to ‖X‖2=tr(Σ)∥X∥2=tr(Σ) resulting in the formula given above.
la source
Let the total variance, T, in a data set of vectors be the sum of squared errors (SSE) between the vectors in the data set and the mean vector of the data set, T=∑i(xi−ˉx)⋅(xi−ˉx)
Now let the predictor of xi, f(xi), be the projection of vector xi onto a unit vector c.
fc(xi)=(c⋅xi)c
Then the SSE for a given c is SSEc=∑i(xi−fc(xi))⋅(xi−fc(xi))
I think that if you choose c to minimize SSEc, then c is the first principal component.
If instead you choose c to be the normalized version of the vector (1,2,5,...), then T−SSEc is the variance in the data described by using c as a predictor.
la source