Ma question est plutôt sémantique. Lorsqu'une méthode produit régulièrement des valeurs p élevées, elle est dite conservatrice. Diriez-vous l'inverse, c'est-à-dire une méthode avec un taux d'erreur élevé de type II libéral?
hypothesis-testing
statistical-significance
p-value
terminology
type-i-and-ii-errors
JonJup
la source
la source
Réponses:
Selon cette page d'accueil, il est courant d'utiliser cette terminologie.
qui peut être spécifié dans le sens suivant:
Cependant, je vous recommande d'utiliser d'autres terminologies, par exemple la définition du pouvoir. Si un test d'hypothèse est "libéral" dans votre terminologie, il a plus de pouvoir. Si un test d'hypothèse est «conservateur» dans votre terminologie, il a moins de pouvoir. D'après mon expérience, le terme "une hypothèse libérale" est à peine utilisé dans la pratique et peut sembler inhabituel à votre public, même si votre public est composé de statisticiens.
Dans le paragraphe suivant, j'explique pourquoi «conservateur» et «libéral» ne sont pas toujours la différence exacte en politique. Par conséquent, je déconseille d'utiliser libéral comme opposé à conservateur dans les statistiques. N'hésitez pas à ignorer cette partie si cela ne vous aide pas
Notez qu'en politique politique, le libéral n'est pas nécessairement l'opposé du conservateur. Aux États-Unis, les politiciens de gauche comme Bernie Sanders sont appelés libéraux, mais dans de nombreuses régions d'Europe, par exemple en Allemagne, aux Pays-Bas et au Danemark, c'est différent. En politique allemande, le libéralisme est principalement compris comme le maximum de liberté politique, en particulier en économie. Le Parti libéral allemand (FDP) est dans de nombreux domaines plutôt de droite que socialiste, même s'il approuve des questions telles que les droits LGBT et la légalisation du cannabis. Certains Allemands pourraient penser à ce qu'on appelle les libertariens aux États-Unis lorsque vous parlez de "politique libérale". Au Danemark et aux Pays-Bas, c'est encore plus compliqué. Vous avez deux grands partis qui se considèrent comme libéraux - Aux Pays-Bas "VVD" et "D66"; Au Danemark, le "Vestre" et la "Radicale Vestre". Alors que "VVD" et "Vestre" sont plutôt "de droite", le "D66" et la "Radicale Vestre" sont plutôt de gauche.
Pour cette raison, vous ne devez pas utiliser la terminologie: "test statistique conservateur" et "test statistique libéral" lorsque vous parlez à un public mondial et international.
PS: J'espère avoir gardé ma position politique en dehors de ce sujet et l'expliquer de manière neutre.
la source
La question affirme que «lorsqu'une méthode produit régulièrement des valeurs p élevées, elle est qualifiée de conservatrice». Comme l'a souligné @Acccumulation dans les commentaires, une valeur de p a une définition précise. On n'a pas de valeurs de p plus ou moins conservatrices. En pratique, il faut parfois estimer une valeur de p (par exemple en utilisant le bootstrap), et je suppose que l'on pourrait décrire un tel estimateur comme "conservateur". Mais je ne l'ai pas vu dans la pratique, et je ne pense pas que ce soit la question.
Bien que je n'ai pas de référence à portée de main, il semble certainement naturel de se référer à un test d'hypothèse comme étant plus conservateur qu'un autre s'il a une erreur de type 1 plus petite. L'utilisation de libéral dans le sens opposé semble possible, même si je ne me souviens pas l'avoir vu nulle part.
Le terme «conservateur» est souvent utilisé pour les intervalles de confiance. Une procédure d'intervalle de confiance à 95% aura des probabilités de couverture différentes selon la valeur réelle du paramètre. Par exemple, dans Brown et al., Interval Estimation for a Binomial Proportion , parlant de deux intervalles de confiance différents pour une probabilité de Bernoulli p, ils disent que "la probabilité de couverture de l'intervalle [Agresti – Coull] est assez conservatrice pour p très proche à 0 ou 1. Par rapport à l'intervalle de Wilson, il est plus conservateur, en particulier pour les petits n. " Dire que c'est conservateur pour p très proche de 0 ou 1 signifie que pour p proche de 0 ou 1, la probabilité que l'intervalle contenant la vraie valeur de p soit très élevée - supérieure à la couverture nominale de l'intervalle (disons 95% ).
la source