Je suis un nouvel utilisateur de WinBUGS et j'ai une question pour votre aide. Après avoir exécuté le code suivant, j'ai obtenu les paramètres de beta0
through beta4
(statistiques, densité), mais je ne sais pas comment obtenir la prédiction de la dernière valeur de h
, que j'ai définie NA
pour modéliser dans le code.
Quelqu'un peut-il me donner un indice? Tout avis serait grandement apprécié.
model {
for(i in 1: N) {
CF01[i] ~ dnorm(0, 20)
CF02[i] ~ dnorm(0, 1)
h[i] ~ dpois (lambda [i])
log(lambda [i]) <- beta0 + beta1*CF03[i] + beta2*CF02[i] + beta3*CF01[i] + beta4*IND[i]
}
beta0 ~ dnorm(0.0, 1.0E-6)
beta1 ~ dnorm(0.0, 1.0E-6)
beta2 ~ dnorm(0.0, 1.0E-6)
beta3 ~ dnorm(0.0, 1.0E-6)
beta4 <- log(p)
p ~ dunif(lower, upper)
}
INITS
list(beta0 = 0, beta1 = 0, beta2 = 0, beta3 = 0, p = 0.9)
DATA(LIST)
list(N = 154, lower = 0.80, upper = 0.95,
h = c(1, 4, 1, 2, 1, 2, 1, 1, 1, 3, 3, 0, 0, 0, 2, 0, 1, 0, 4, 2,
3, 0, 2, 1, 1, 2, 2, 2, 3, 4, 2, 3, 1, 0, 1, 3, 3, 3, 1, 0, 1,
0, 5, 2, 1, 2, 1, 3, 3, 1, 1, 0, 2, 2, 0, 3, 0, 0, 3, 2, 2, 2,
1, 0, 3, 3, 1, 1, 1, 2, 1, 0, 1, 2, 1, 2, 0, 2, 1, 0, 0, 2, 5,
0, 2, 1, 0, 2, 1, 2, 2, 2, 0, 3, 2, 1, 3, 3, 3, 3, 0, 1, 3, 3,
3, 1, 0, 0, 1, 2, 1, 0, 1, 4, 1, 1, 1, 1, 2, 1, 3, 0, 0, 1, 1,
1, 1, 0, 2, 1, 0, 0, 1, 1, 5, 1, 1, 1, 3, 0, 1, 1, 1, 0, 2, 1,
0, 3, 3, 0, 0, 1, 2, 6, NA),
CF03 = c(-1.575, 0.170, -1.040, -0.010, -0.750,
0.665, -0.250, 0.145, -0.345, -1.915, -1.515,
0.215, -1.040, -0.035, 0.805, -0.860, -1.775,
1.725, -1.345, 1.055, -1.935, -0.160, -0.075,
-1.305, 1.175, 0.130, -1.025, -0.630, 0.065,
-0.665, 0.415, -0.660, -1.145, 0.165, 0.955,
-0.920, 0.250, -0.365, 0.750, 0.045, -2.760,
-0.520, -0.095, 0.700, 0.155, -0.580, -0.970,
-0.685, -0.640, -0.900, -0.250, -1.355, -1.330,
0.440, -1.505, -1.715, -0.330, 1.375, -1.135,
-1.285, 0.605, 0.360, 0.705, 1.380, -2.385, -1.875,
-0.390, 0.770, 1.605, -0.430, -1.120, 1.575, 0.440,
-1.320, -0.540, -1.490, -1.815, -2.395, 0.305,
0.735, -0.790, -1.070, -1.085, -0.540, -0.935,
-0.790, 1.400, 0.310, -1.150, -0.725, -0.150,
-0.640, 2.040, -1.180, -0.235, -0.070, -0.500,
-0.750, -1.450, -0.235, -1.635, -0.460, -1.855,
-0.925, 0.075, 2.900, -0.820, -0.170, -0.355,
-0.170, 0.595, 0.655, 0.070, 0.330, 0.395, 1.165,
0.750, -0.275, -0.700, 0.880, -0.970, 1.155, 0.600,
-0.075, -1.120, 1.480, -1.255, 0.255, 0.725,
-1.230, -0.760, -0.380, -0.015, -1.005, -1.605,
0.435, -0.695, -1.995, 0.315, -0.385, -0.175,
-0.470, -1.215, 0.780, -1.860, -0.035, -2.700,
-1.055, 1.210, 0.600, -0.710, 0.425, 0.155, -0.525,
-0.565),
CF02 = c(NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, 0.38, 0.06, -0.94,
-0.02, -0.28, -0.78, -0.95, 2.33, 1.43, 1.24, 1.26,
-0.75, -1.5, -2.09, 1.01, -0.05, 2.48, 2.48, 0.46,
0.46, -0.2, -1.11, 0.52, -0.37, 0.58, 0.86, 0.59,
-0.12, -1.33, 1.4, -1.84, -1.4, -0.76, -0.23,
-1.78, -1.43, 1.2, 0.32, 1.87, 0.43, -1.71, -0.54,
-1.25, -1.01, -1.98, 0.52, -1.07, -0.44, -0.24,
-1.31, -2.14, -0.43, 2.47, -0.09, -1.32, -0.3,
-0.99, 1.1, 0.41, 1.01, -0.19, 0.45, -0.07, -1.41,
0.87, 0.68, 1.61, 0.36, -1.06, -0.44, -0.16, 0.72,
-0.69, -0.94, 0.11, 1.25, 0.33, -0.05, 0.87, -0.37,
-0.2, -2.22, 0.26, -0.53, -1.59, 0.04, 0.16, -2.66,
-0.21, -0.92, 0.25, -1.36, -1.62, 0.61, -0.2, 0,
1.14, 0.27, -0.64, 2.29, -0.56, -0.59, 0.44, -0.05,
0.56, 0.71, 0.32, -0.38, 0.01, -1.62, 1.74, 0.27, 0.97,
1.22, -0.21, -0.05, 1.15, 1.49, -0.15, 0.05, -0.87,
-0.3, -0.08, 0.5, 0.84, -1.67, 0.69, 0.47, 0.44,
-1.35, -0.24, -1.5, -1.32, -0.08, 0.76, -0.57,
-0.84, -1.11, 1.94, -0.68),
CF01 = c(NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, -0.117, -0.211, -0.333, -0.229, -0.272,
-0.243, -0.148, 0.191, -0.263, -0.239, -0.168,
-0.381, -0.512, -0.338, -0.296, 0.067, 0.104,
-0.254, -0.167, -0.526, -0.096, -0.43, 0.013,
-0.438, -0.297, -0.131, -0.098, -0.046, -0.063,
-0.194, -0.155, -0.645, -0.603, -0.374, -0.214,
-0.165, -0.509, -0.171, -0.442, -0.468, -0.289,
-0.427, -0.519, -0.454, 0.046, -0.275, -0.401,
-0.542, -0.488, -0.52, -0.018, -0.551, -0.444,
-0.254, -0.286, 0.048, -0.03, -0.015, -0.219,
-0.029, 0.059, 0.007, 0.157, 0.141, -0.035, 0.136,
0.526, 0.113, 0.22, -0.022, -0.173, 0.021, -0.027,
0.261, 0.082, -0.266, -0.284, -0.097, 0.097, -0.06,
0.397, 0.315, 0.302, -0.026, 0.268, -0.111, 0.084,
0.14, -0.073, 0.287, 0.061, 0.035, -0.022, -0.091,
-0.22, -0.021, -0.17, -0.184, 0.121, -0.192,
-0.24, -0.283, -0.003, -0.45, -0.138, -0.143,
0.017, -0.245, 0.003, 0.108, 0.015, -0.219, 0.09,
-0.22, -0.004, -0.178, 0.396, 0.204, 0.342, 0.079,
-0.034, -0.122, -0.24, -0.125, 0.382, 0.072, 0.294,
0.577, 0.4, 0.213, 0.359, 0.074, 0.388, 0.253, 0.167),
IND = c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0))
bayesian
bugs
prediction
winbugs
Bo Yu
la source
la source
h[N]
plutôt quelambda[N]
... et vous obtenez la distribution postérieure de la valeur prédite.h[N]
n'est pas la valeur prédite: ce sera une collection de tirages à partir d'un ensemble de distributions de Poisson prédites. En tant que tel, il combine la variation des paramètres de Poisson et la variation de ces distributions de Poisson elles-mêmes. Ce qui est pertinent, c'est la distribution postérieure delambda[N]
.Réponses:
Ajoutez simplement la variable
h
à la liste des paramètres à surveiller. Si vous utilisez un package comme R2WinBUGS, ajoutez une variableh
à la liste passée à l'parameters.to.save
argument de labugs
fonction. Ensuite, regardez votre dernière valeur dansh
(celle avec NA) - vous obtiendrez une distribution postérieure là-bas.C'est la manière habituelle de faire des prédictions dans l'inférence bayésienne ( voir aussi cette question ). C'est sympa et simple! Plus de séparation de l'évaluation et de la prévision des paramètres. Tout se fait en même temps. La distrubution postérieure des paramètres est donnée par les données réelles et propagée aux valeurs NA (sous forme de "prédictions").
la source