J'ai la fonction:
J'ai trouvé que sa fonction de complément était:
Je dois montrer que: mais je ne vois pas comment le faire.
Il semble qu'il n'y ait rien qui s'annule.
Éditer
Comme suggéré, j'ai maintenant utilisé le théorème de DeMorgan et trouvé ceci:
Mais il me semble toujours que rien ne me rapproche de la réalisation de
boolean-algebra
Carl
la source
la source
Réponses:
Since Carl asked nicely. Starting point:f(x,y,z,w)=wx+yz
and
f'(x,y,z,w)=w'y'+w'z'+x'y'+x'z'
Suivez les étapes suivantes avecf′ :
f'(x,y,z,w)=w'(y'+z')+x'(y'+z')
f'(x,y,z,w)=(w'+x′)(y'+z')
DeMorgan:
f'(x,y,z,w)=(wx)'(yz)′
DeMorgan, encore:
f'(x,y,z,w)=(wx+yz)′
Alors maintenant, le côté droit def′ est juste la simple négation du côté droit def . Ce qui est un peu anti-climatique, puisque maintenant nous nous appuyons uniquement sur le fait que toute expression x+x′=1 , c'est ce que les gens ont toujours dit à propos de f+f′=1 , mais au moins cela fournit un peu Explication de l'algèbre booléenne pour expliquer pourquoi cela est vrai.
la source
Le fait est que la fonctionf() n'a pas vraiment d'importance . Le fait clé est que sa sortie est une seule valeur binaire.
It is a fundamental fact in Boolean algebra that the complement of a binary value is true whenever the value itself is false. This is known as the law of excluded middle. So ORing a value with its complement is always true, and ANDing a value with its complement is always false.
It's nice that you were able to derive the specific functionf′() , but that's actually irrelevant to the actual question!
la source
All previous answers are correct, and very much in depth. But a simpler way to approach this might be to remember that in boolean algebra, all values must be either 0 or 1.
So... either F is 1, then F' is 0, or the other way around: F is 0 and F' is 1. If you then apply the boolean OR-function: F + F', you will always have one of both terms 1, so the result will always be 1.
la source
My answer is similar to the one of Dave Tweed, meaning that I put it on a more formal level. I obviously answered later, but I decided to nevertheless post it since someone may find this approach interesting.
The relation you are trying to prove is independent from the structure of the functionf since it is, as a matter of fact, a tautology. To explain what I mean, I propose a demonstration for a general, correctly formed, Boolean expression P in an arbitrary number of Boolean variables, say n∈N , y1,…,yn , where yi∈{0,1} for all i=1,…,n .P(y1,…,yn)∈{0,1} and consider the following two sets of Boolean values for the n -dimensional Boolean vector (y1,…,yn)
YY¯={(y1,…,yn)∈{0,1}n|P(y1,…,yn)=1}={(y1,…,yn)∈{0,1}n|P(y1,…,yn)=0}
These set are a partition of the full set of values the input Boolean vector can assume, i.e. Y∪Y¯={0,1}n and Y∩Y¯=∅ (the empty set), thus
P(y1,…,yn)P′(y1,…,yn)={01if (y1,…,yn)∈Y¯if (y1,…,yn)∈Y⇕={10if (y1,…,yn)∈Y¯if (y1,…,yn)∈Y
therefore we always have
P+P′=1∀(y1,…,yn)∈{0,1}n
We have that
la source
All good answers that provide the necessary justification in one way or the other. Since it is a tautology, it's hard to create a proof that doesn't just result in "it is what it is!". Perhaps this method help tackle it from yet another, broader angle:
Expand both statements to include their redundant cases, and the remove the repeated cases:
and
I've kept the terms in consistent order to make the derivation more obvious, but they could be written alphabetically to be clearer. In any case, the point is thatf ORs seven 4-bit cases, and f′ ORs nine, distinct 4-bit cases. Together they OR all sixteen 4-bit cases, so reduce to 1 .
la source
F + F' = 1 means that you have to show that no matter the state of the 4 inputs, OR'ing the result of those 2 always result in 1,
A few minutes in excel shows it is indeed the case. You can use "NOT()" to invert between 0 and 1 in excel.
F = W * X + Y * Z
F' = W' * Y' + W' * Z' + X' * Y' + X' * Z'
As to why this is the case, If you want F to be false, e.g. setting W and Y low, you just made F' true. If you make X and Z low, you also made F" true, same for swapping there pairs.
la source
By simple definition of+ (OR) and ' (NOT)
la source