Je suis nouveau dans le langage R. Je voudrais savoir comment simuler à partir d'un modèle de régression linéaire multiple qui remplit les quatre hypothèses de la régression.
D'accord, merci.
Disons que je veux simuler les données sur la base de cet ensemble de données:
y<-c(18.73,14.52,17.43,14.54,13.44,24.39,13.34,22.71,12.68,19.32,30.16,27.09,25.40,26.05,33.49,35.62,26.07,36.78,34.95,43.67)
x1<-c(610,950,720,840,980,530,680,540,890,730,670,770,880,1000,760,590,910,650,810,500)
x2<-c(1,1,3,2,1,1,3,3,2,2,1,3,3,2,2,2,3,3,1,2)
fit<-lm(y~x1+x2)
summary(fit)
alors j'obtiens la sortie:
Call:
lm(formula = y ~ x1 + x2)
Residuals:
Min 1Q Median 3Q Max
-13.2805 -7.5169 -0.9231 7.2556 12.8209
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 42.85352 11.33229 3.782 0.00149 **
x1 -0.02534 0.01293 -1.960 0.06662 .
x2 0.33188 2.41657 0.137 0.89238
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 8.679 on 17 degrees of freedom
Multiple R-squared: 0.1869, Adjusted R-squared: 0.09127
F-statistic: 1.954 on 2 and 17 DF, p-value: 0.1722
Ma question est de savoir comment simuler de nouvelles données qui imitent les données originales ci-dessus?
la source
rnorm()
au lieu de11:30
), mais peu importe à quel point j'augmente l'erreur (sigma), les erreurs standard de l'estimation sont à peu près similaires.Voici un autre code pour générer une régression linéaire multiple avec des erreurs suivant la distribution normale:
la source