Une façon d'explorer cela est d'essayer d'adapter le même modèle à l'aide d'outils différents, en voici un exemple:
> fit1 <- lm( Sepal.Length ~ ., data=iris )
> fit2 <- glm( Sepal.Length ~ ., data=iris )
> summary(fit1)
Call:
lm(formula = Sepal.Length ~ ., data = iris)
Residuals:
Min 1Q Median 3Q Max
-0.79424 -0.21874 0.00899 0.20255 0.73103
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.17127 0.27979 7.760 1.43e-12 ***
Sepal.Width 0.49589 0.08607 5.761 4.87e-08 ***
Petal.Length 0.82924 0.06853 12.101 < 2e-16 ***
Petal.Width -0.31516 0.15120 -2.084 0.03889 *
Speciesversicolor -0.72356 0.24017 -3.013 0.00306 **
Speciesvirginica -1.02350 0.33373 -3.067 0.00258 **
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.3068 on 144 degrees of freedom
Multiple R-squared: 0.8673, Adjusted R-squared: 0.8627
F-statistic: 188.3 on 5 and 144 DF, p-value: < 2.2e-16
> summary(fit2)
Call:
glm(formula = Sepal.Length ~ ., data = iris)
Deviance Residuals:
Min 1Q Median 3Q Max
-0.79424 -0.21874 0.00899 0.20255 0.73103
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.17127 0.27979 7.760 1.43e-12 ***
Sepal.Width 0.49589 0.08607 5.761 4.87e-08 ***
Petal.Length 0.82924 0.06853 12.101 < 2e-16 ***
Petal.Width -0.31516 0.15120 -2.084 0.03889 *
Speciesversicolor -0.72356 0.24017 -3.013 0.00306 **
Speciesvirginica -1.02350 0.33373 -3.067 0.00258 **
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for gaussian family taken to be 0.09414226)
Null deviance: 102.168 on 149 degrees of freedom
Residual deviance: 13.556 on 144 degrees of freedom
AIC: 79.116
Number of Fisher Scoring iterations: 2
> sqrt( 0.09414226 )
[1] 0.3068261
Vous pouvez donc voir que l'erreur standard résiduelle du modèle linéaire n'est que la racine carrée de la dispersion du glm, en d'autres termes, la dispersion (pour les modèles gaussiens) est la même que l'erreur quadratique moyenne.