La formation après 15 époques sur l'ensemble de données CIFAR-10 semble faire en sorte que la perte de validation ne diminue plus, se situant autour de 1,4 (avec une précision de validation de 60%). J'ai mélangé l'ensemble d'entraînement, divisé par 255 et importé en float32. J'ai essayé de nombreuses architectures, avec et sans décrochage dans les couches Conv2D et rien ne semble fonctionner. La même architecture atteint une précision de 99,7% sur les ensembles de test pour MNIST. Veuillez consulter l'architecture ci-dessous:
(Remarque: j'ai essayé d'augmenter le décrochage et d'augmenter / diminuer le taux d'apprentissage de l'optimiseur Adam pour éviter le surapprentissage, tout cela empêche le surapprentissage, mais avec la formation et l'ensemble de test ayant maintenant une faible précision similaire autour de 60%).
with tf.device('/gpu:0'):
tf.placeholder(tf.float32, shape=(None, 20, 64))
#placeholder initialized (pick /cpu:0 or /gpu:0)
seed = 6
np.random.seed(seed)
modelnn = Sequential()
neurons = x_train_reduced.shape[1:]
modelnn.add(Convolution2D(32, 3, 3, input_shape=neurons, activation='relu', border_mode='same'))
modelnn.add(Convolution2D(32, 3, 3, activation='relu', border_mode='same'))
modelnn.add(MaxPooling2D(pool_size=(2, 2)))
modelnn.add(Dropout(0.2))
modelnn.add(Convolution2D(64, 3, 3, activation='relu', border_mode='same'))
modelnn.add(Convolution2D(64, 3, 3, activation='relu', border_mode='same'))
modelnn.add(MaxPooling2D(pool_size=(2, 2)))
modelnn.add(Dropout(0.2))
modelnn.add(Convolution2D(128, 3, 3, activation='relu', border_mode='same'))
modelnn.add(Convolution2D(128, 3, 3, activation='relu', border_mode='same'))
modelnn.add(MaxPooling2D(pool_size=(2, 2)))
modelnn.add(Dropout(0.2))
#modelnn.add(Convolution2D(256, 3, 3, activation='relu', border_mode='same'))
#modelnn.add(Convolution2D(256, 3, 3, activation='relu', border_mode='same'))
#modelnn.add(MaxPooling2D(pool_size=(2, 2)))
modelnn.add(Flatten())
#modelnn.add(Dropout(0.5))
modelnn.add(Dense(1024, activation='relu', W_constraint=maxnorm(3)))
modelnn.add(Dropout(0.5))
modelnn.add(Dense(512, activation='relu', W_constraint=maxnorm(3)))
modelnn.add(Dropout(0.5))
modelnn.add(Dense(10, activation='softmax'))
modelnn.compile(loss='categorical_crossentropy', optimizer=optimizer_input, metrics=['accuracy'])
y_train = to_categorical(y_train)
modelnn.fit(x_train_reduced, y_train, nb_epoch=nb_epoch_count, shuffle=True, batch_size=bsize,
validation_split=0.1)
Résultats:
44100/44100 [==============================] - 22s - loss: 2.1453 - acc: 0.2010 - val_loss: 1.9812 - val_acc: 0.2959
Epoch 2/50
44100/44100 [==============================] - 24s - loss: 1.9486 - acc: 0.3089 - val_loss: 1.8685 - val_acc: 0.3567
Epoch 3/50
44100/44100 [==============================] - 18s - loss: 1.8599 - acc: 0.3575 - val_loss: 1.7822 - val_acc: 0.3982
Epoch 4/50
44100/44100 [==============================] - 18s - loss: 1.7925 - acc: 0.3933 - val_loss: 1.7272 - val_acc: 0.4229
Epoch 5/50
44100/44100 [==============================] - 18s - loss: 1.7425 - acc: 0.4195 - val_loss: 1.6806 - val_acc: 0.4459
Epoch 6/50
44100/44100 [==============================] - 18s - loss: 1.6998 - acc: 0.4440 - val_loss: 1.6436 - val_acc: 0.4682
Epoch 7/50
44100/44100 [==============================] - 18s - loss: 1.6636 - acc: 0.4603 - val_loss: 1.6156 - val_acc: 0.4837
Epoch 8/50
44100/44100 [==============================] - 18s - loss: 1.6333 - acc: 0.4781 - val_loss: 1.6351 - val_acc: 0.4776
Epoch 9/50
44100/44100 [==============================] - 18s - loss: 1.6086 - acc: 0.4898 - val_loss: 1.5732 - val_acc: 0.5063
Epoch 10/50
44100/44100 [==============================] - 18s - loss: 1.5776 - acc: 0.5065 - val_loss: 1.5411 - val_acc: 0.5227
Epoch 11/50
44100/44100 [==============================] - 18s - loss: 1.5585 - acc: 0.5145 - val_loss: 1.5485 - val_acc: 0.5212
Epoch 12/50
44100/44100 [==============================] - 18s - loss: 1.5321 - acc: 0.5288 - val_loss: 1.5354 - val_acc: 0.5316
Epoch 13/50
44100/44100 [==============================] - 18s - loss: 1.5082 - acc: 0.5402 - val_loss: 1.5022 - val_acc: 0.5427
Epoch 14/50
44100/44100 [==============================] - 18s - loss: 1.4945 - acc: 0.5438 - val_loss: 1.4916 - val_acc: 0.5490
Epoch 15/50
44100/44100 [==============================] - 192s - loss: 1.4762 - acc: 0.5535 - val_loss: 1.5159 - val_acc: 0.5394
Epoch 16/50
44100/44100 [==============================] - 18s - loss: 1.4577 - acc: 0.5620 - val_loss: 1.5389 - val_acc: 0.5257
Epoch 17/50
44100/44100 [==============================] - 18s - loss: 1.4425 - acc: 0.5671 - val_loss: 1.4590 - val_acc: 0.5667
Epoch 18/50
44100/44100 [==============================] - 18s - loss: 1.4258 - acc: 0.5766 - val_loss: 1.4552 - val_acc: 0.5763
Epoch 19/50
44100/44100 [==============================] - 18s - loss: 1.4113 - acc: 0.5805 - val_loss: 1.4439 - val_acc: 0.5767
Epoch 20/50
44100/44100 [==============================] - 18s - loss: 1.3971 - acc: 0.5879 - val_loss: 1.4473 - val_acc: 0.5769
Epoch 21/50
44100/44100 [==============================] - 18s - loss: 1.3850 - acc: 0.5919 - val_loss: 1.4251 - val_acc: 0.5871
Epoch 22/50
44100/44100 [==============================] - 18s - loss: 1.3668 - acc: 0.6006 - val_loss: 1.4203 - val_acc: 0.5910
Epoch 23/50
44100/44100 [==============================] - 18s - loss: 1.3549 - acc: 0.6051 - val_loss: 1.4207 - val_acc: 0.5939
Epoch 24/50
44100/44100 [==============================] - 18s - loss: 1.3373 - acc: 0.6111 - val_loss: 1.4516 - val_acc: 0.5784
Epoch 25/50
44100/44100 [==============================] - 18s - loss: 1.3285 - acc: 0.6149 - val_loss: 1.4146 - val_acc: 0.5922
Epoch 26/50
44100/44100 [==============================] - 18s - loss: 1.3134 - acc: 0.6205 - val_loss: 1.4090 - val_acc: 0.6024
Epoch 27/50
44100/44100 [==============================] - 18s - loss: 1.3043 - acc: 0.6239 - val_loss: 1.4307 - val_acc: 0.5959
Epoch 28/50
44100/44100 [==============================] - 18s - loss: 1.2862 - acc: 0.6297 - val_loss: 1.4241 - val_acc: 0.5978
Epoch 29/50
44100/44100 [==============================] - 18s - loss: 1.2706 - acc: 0.6340 - val_loss: 1.4046 - val_acc: 0.6067
Epoch 30/50
44100/44100 [==============================] - 18s - loss: 1.2634 - acc: 0.6405 - val_loss: 1.4120 - val_acc: 0.6037
Epoch 31/50
44100/44100 [==============================] - 18s - loss: 1.2473 - acc: 0.6446 - val_loss: 1.4067 - val_acc: 0.6045
Epoch 32/50
44100/44100 [==============================] - 18s - loss: 1.2411 - acc: 0.6471 - val_loss: 1.4083 - val_acc: 0.6098
Epoch 33/50
44100/44100 [==============================] - 18s - loss: 1.2241 - acc: 0.6498 - val_loss: 1.4091 - val_acc: 0.6076
Epoch 34/50
44100/44100 [==============================] - 18s - loss: 1.2121 - acc: 0.6541 - val_loss: 1.4209 - val_acc: 0.6127
Epoch 35/50
44100/44100 [==============================] - 18s - loss: 1.1995 - acc: 0.6582 - val_loss: 1.4230 - val_acc: 0.6131
Epoch 36/50
44100/44100 [==============================] - 18s - loss: 1.1884 - acc: 0.6622 - val_loss: 1.4024 - val_acc: 0.6124
Epoch 37/50
44100/44100 [==============================] - 18s - loss: 1.1778 - acc: 0.6657 - val_loss: 1.4328 - val_acc: 0.6080
Epoch 38/50
44100/44100 [==============================] - 18s - loss: 1.1612 - acc: 0.6683 - val_loss: 1.4246 - val_acc: 0.6159
Epoch 39/50
44100/44100 [==============================] - 18s - loss: 1.1466 - acc: 0.6735 - val_loss: 1.4282 - val_acc: 0.6122
Epoch 40/50
44100/44100 [==============================] - 18s - loss: 1.1325 - acc: 0.6783 - val_loss: 1.4311 - val_acc: 0.6157
Epoch 41/50
44100/44100 [==============================] - 18s - loss: 1.1213 - acc: 0.6806 - val_loss: 1.4647 - val_acc: 0.6047
Epoch 42/50
44100/44100 [==============================] - 18s - loss: 1.1064 - acc: 0.6842 - val_loss: 1.4631 - val_acc: 0.6047
Epoch 43/50
44100/44100 [==============================] - 18s - loss: 1.0967 - acc: 0.6870 - val_loss: 1.4535 - val_acc: 0.6106
Epoch 44/50
44100/44100 [==============================] - 18s - loss: 1.0822 - acc: 0.6893 - val_loss: 1.4532 - val_acc: 0.6149
Epoch 45/50
44100/44100 [==============================] - 18s - loss: 1.0659 - acc: 0.6941 - val_loss: 1.4691 - val_acc: 0.6108
Epoch 46/50
44100/44100 [==============================] - 18s - loss: 1.0610 - acc: 0.6956 - val_loss: 1.4751 - val_acc: 0.6106
Epoch 47/50
44100/44100 [==============================] - 18s - loss: 1.0397 - acc: 0.6981 - val_loss: 1.4857 - val_acc: 0.6041
Epoch 48/50
44100/44100 [==============================] - 18s - loss: 1.0208 - acc: 0.7039 - val_loss: 1.4901 - val_acc: 0.6106
Epoch 49/50
44100/44100 [==============================] - 18s - loss: 1.0187 - acc: 0.7036 - val_loss: 1.4994 - val_acc: 0.6106
Epoch 50/50
44100/44100 [==============================] - 18s - loss: 1.0024 - acc: 0.7070 - val_loss: 1.5078 - val_acc: 0.6039
Time: 1109.7512991428375
Neural Network now trained from dimensions (49000, 3, 32, 32)
Mise à jour: tests supplémentaires, y compris BatchNormalization avec et sans MaxNorm -
Nouvelle architecture:
modelnn.add(Convolution2D(32, 3, 3, input_shape=neurons, activation='relu', border_mode='same'))
modelnn.add(Convolution2D(32, 3, 3, activation='relu', border_mode='same'))
modelnn.add(MaxPooling2D(pool_size=(2, 2)))
modelnn.add(BatchNormalization())
modelnn.add(Dropout(0.2))
modelnn.add(Convolution2D(64, 3, 3, activation='relu', border_mode='same'))
modelnn.add(Convolution2D(64, 3, 3, activation='relu', border_mode='same'))
modelnn.add(MaxPooling2D(pool_size=(2, 2)))
modelnn.add(BatchNormalization())
modelnn.add(Dropout(0.2))
modelnn.add(Convolution2D(128, 3, 3, activation='relu', border_mode='same'))
modelnn.add(Convolution2D(128, 3, 3, activation='relu', border_mode='same'))
modelnn.add(BatchNormalization())
modelnn.add(MaxPooling2D(pool_size=(2, 2)))
modelnn.add(Dropout(0.2))
# modelnn.add(Convolution2D(256, 3, 3, activation='relu', border_mode='same'))
# modelnn.add(Convolution2D(256, 3, 3, activation='relu', border_mode='same'))
# modelnn.add(MaxPooling2D(pool_size=(2, 2)))
modelnn.add(Flatten())
modelnn.add(Dense(1024, activation='relu', W_constraint=maxnorm(3)))
modelnn.add(BatchNormalization())
modelnn.add(Dropout(0.5))
modelnn.add(Dense(512, activation='relu', W_constraint=maxnorm(3)))
modelnn.add(BatchNormalization())
modelnn.add(Dropout(0.5))
modelnn.add(Dense(10, activation='softmax'))
la source
En regardant vos valeurs de perte et de précision dans l'échantillon et hors échantillon, votre modèle est actuellement sous-adapté, mais il s'améliore de façon monotone. En d'autres termes, il semble que l'exécution de cette fonction pour plus d'époques entraînerait une performance prédictive plus élevée / moins de perte d'entropie.
Vous utilisez une architecture hautement régularisée (couches de suppression), ce qui n'est pas mauvais. Cependant, il n'est pas non plus surprenant que la formation prenne beaucoup plus de temps que sans aucune régularisation. En raison des couches d'abandon, il est peu probable que vous vous équipiez (sensiblement).
Choses que vous pouvez essayer d'accélérer l'apprentissage:
je. ajustez le taux d'apprentissage: par exemple, commencez par un petit, montez-le au milieu, et vers la fin, abaissez-le à nouveau.
ii. ajouter la normalisation par lots : dans l'architecture ci-dessus, vous pouvez inclure la norme de lot à la fois dans vos blocs convolutionnels et vos couches denses. Habituellement, la couche batch-norm est ajoutée après l'activation non linéaire mais avant le décrochage. Je ne sais pas dans quelle mesure batch-standard joue avec maxnorm. Pour vos couches denses, j'essaierais la norme batch + dropuout avec / sans maxnorm. J'ai l'impression que vous n'avez pas besoin de maxnorm si vous appliquez la normalisation par lots.
iii. augmenter la taille du lot: je ne sais pas quelle est votre taille de lot et si vous possédez un GPU. Si vous avez un GPU, vous devriez probablement essayer de maximiser la taille de votre lot en multiplicatifs de 32.
Enfin, pour vous assurer que vos données sont «apprenables» / non corrompues (par exemple, vous n'avez pas appliqué à contrecœur une transformation pour la déformer), je supprimerais toute régularisation de votre architecture, exécuterais la formation et verrais que vous pouvez vous adapter à l'ensemble de formation . Si vous pouvez apprendre les données d'entraînement avec succès, le reste est un exercice de généralisation. Si vous ne pouvez pas vous adapter aux données d'entraînement même sans régularisation, votre modèle a probablement besoin de plus de capacité (architecture plus profonde et plus large).
la source
J'ai donné un coup de feu aujourd'hui et j'ai toujours été en mesure d'atteindre 75 à 80% de la précision du test.
Le nombre total de paramètres utilisés était:
183,242
Vous pouvez faire mieux en ajoutant peut-être quelques couches supplémentaires, mais vous n'avez pas besoin d'être excessif. Des réseaux plus complexes ne donnent pas toujours de meilleurs résultats.
Suggestions
Je vous suggère de garder votre architecture simple. Suivez le rasoir d'Occam , simple c'est mieux.
Faites évoluer vos données
N'utilisez pas de graine aléatoire
Utilisez un optimiseur approprié; J'ai utilisé Adadelta tel quel de Keras.
Les CNN n'ont pas besoin d'être alambiqués; rester simple
Les réseaux plus maigres plus profonds fonctionnent parfois mieux que les réseaux plus larges
Utilisez la régularisation (par exemple Dropout)
Voici mon code (en utilisant Keras)
la source