“Précision pour chaque classe” Réponses codées

Précision pour chaque classe

from sklearn.metrics import confusion_matrix
import numpy as np

y_true = [0, 1, 2, 2, 2]
y_pred = [0, 0, 2, 2, 1]
target_names = ['class 0', 'class 1', 'class 2']

#Get the confusion matrix
cm = confusion_matrix(y_true, y_pred)
#array([[1, 0, 0],
#   [1, 0, 0],
#   [0, 1, 2]])

#Now the normalize the diagonal entries
cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
#array([[1.        , 0.        , 0.        ],
#      [1.        , 0.        , 0.        ],
#      [0.        , 0.33333333, 0.66666667]])

#The diagonal entries are the accuracies of each class
cm.diagonal()
#array([1.        , 0.        , 0.66666667])
Real Raccoon

Précision pour chaque classe


from sklearn.metrics import confusion_matrix
y_true = [2, 0, 2, 2, 0, 1]
y_pred = [0, 0, 2, 2, 0, 2]
matrix = confusion_matrix(y_true, y_pred)
matrix.diagonal()/matrix.sum(axis=1)

Puzzled Puma

Réponses similaires à “Précision pour chaque classe”

Questions similaires à “Précision pour chaque classe”

Plus de réponses similaires à “Précision pour chaque classe” dans Python

Parcourir les réponses de code populaires par langue

Parcourir d'autres langages de code