Packages d'imputation KNN R

14

Je recherche un package d'imputation KNN. J'ai regardé le paquet d'imputation ( http://cran.r-project.org/web/packages/imputation/imputation.pdf ) mais pour une raison quelconque, la fonction d'imputation KNN (même en suivant l'exemple de la description) semble seulement pour imputer des valeurs nulles (comme ci-dessous). J'ai regardé autour de moi, mais je ne trouve pas encore quelque chose, et je me demandais donc si quelqu'un avait d'autres suggestions pour de bons packages d'imputation KNN?

W

Dans le code ci-dessous - les valeurs NA sont remplacées par des zéros - pas par la valeur moyenne Knn

require(imputation)
x = matrix(rnorm(100),10,10)
x.missing = x > 1
x[x.missing] = NA
kNNImpute(x, 3)
x
Wouter
la source
1
Selon le code source github.com/jeffwong/imputation/blob/master/R/kNN.R , toutes les entrées qui ne peuvent pas être imputées sont simplement mises à zéro. La raison pour laquelle vous voyez autant de zéros est que l'algorithme que l'auteur du package a choisi ne peut pas imputer des valeurs pour ces entrées. Il serait peut-être préférable d'assouplir l'algorithme pour obtenir des estimations raisonnables de ces valeurs.
Flounderer
(voir les lignes 91 à 93 du code dans le lien ci-dessus)
Flounderer
J'ai eu cette même question il y a un moment, postée sur stackoverflow
Alex W
Il suffit de noter: il n'y a pas d' espoir que tout modèle d'imputation aurait une estimation non biaisée de vos données manquantes que vous avez généré (basé sur la façon dont vous avez laissée tomber). Bien sûr, je pense que vous êtes plus intéressé à vous rendre kNNImputeau travail (plutôt qu'à bien travailler), donc vous ne vous souciez probablement pas du parti pris.
Cliff AB
Y a-t-il une raison particulière pour laquelle vous souhaitez utiliser KNN? L'appariement moyen prédictif est assez similaire et possède de nombreuses propriétés optimales.
RayVelcoro

Réponses:

10

Vous pouvez également essayer le package suivant: DMwR .

Il a échoué dans le cas de 3 NN, donnant «Erreur dans knnImputation (x, k = 3): Cas complets insuffisants pour calculer les voisins».

Cependant, essayer 2 donne.

> knnImputation(x,k=2)
             [,1]       [,2]       [,3]       [,4]       [,5]        [,6]
 [1,] -0.59091360 -1.2698175  0.5556009 -0.1327224 -0.8325065  0.71664000
 [2,] -1.27255074 -0.7853602  0.7261897  0.2969900  0.2969556 -0.44612831
 [3,]  0.55473981  0.4748735  0.5158498 -0.9493917 -1.5187722 -0.99377854
 [4,] -0.47797654  0.1647818  0.6167311 -0.5149731  0.5240514 -0.46027809
 [5,] -1.08767831 -0.3785608  0.6659499 -0.7223724 -0.9512409 -1.60547053
 [6,] -0.06153279  0.9486815 -0.5464601  0.1544475  0.2835521 -0.82250221
 [7,] -0.82536029 -0.2906253 -3.0284281 -0.8473210  0.7985286 -0.09751927
 [8,] -1.15366189  0.5341000 -1.0109258 -1.5900281  0.2742328  0.29039928
 [9,] -1.49504465 -0.5419533  0.5766574 -1.2412777 -1.4089572 -0.71069839
[10,] -0.35935440 -0.2622265  0.4048126 -2.0869817  0.2682486  0.16904559
             [,7]       [,8]        [,9]      [,10]
 [1,]  0.58027159 -1.0669137  0.48670802  0.5824858
 [2,] -0.48314440 -1.0532693 -0.34030385 -1.1041681
 [3,] -2.81996446  0.3191438 -0.48117020 -0.0352633
 [4,] -0.55080515 -1.0620243 -0.51383557  0.3161907
 [5,] -0.56808769 -0.3696951  0.35549191  0.3202675
 [6,] -0.25043479 -1.0389393  0.07810902  0.5251606
 [7,] -0.41667318  0.8809541 -0.04613332 -1.1586756
 [8,] -0.06898363 -1.0736161  0.62698065 -1.0373835
 [9,]  0.30051583 -0.2936140  0.31417921 -1.4155193
[10,] -0.68180034 -1.0789745  0.58290920 -1.0197956

Vous pouvez tester des observations suffisantes en utilisant complete.cases (x), où cette valeur doit être d'au moins k.

Une façon de surmonter ce problème consiste à assouplir vos exigences (c.-à-d. Lignes moins incomplètes), en 1) augmentant le seuil NA, ou alternativement, 2) augmentant votre nombre d'observations.

Voici le premier:

> x = matrix(rnorm(100),10,10)
> x.missing = x > 2
> x[x.missing] = NA
> complete.cases(x)
 [1]  TRUE  TRUE  TRUE FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE
> knnImputation(x,k=3)
             [,1]       [,2]       [,3]       [,4]        [,5]       [,6]       [,7]        [,8]        [,9]       [,10]
 [1,]  0.86882569 -0.2409922  0.3859031  0.5818927 -1.50310330  0.8752261 -0.5173105 -2.18244988 -0.28817656 -0.63941237
 [2,]  1.54114079  0.7227511  0.7856277  0.8512048 -1.32442954 -2.1668744  0.7017532 -0.40086348 -0.41251883  0.42924986
 [3,]  0.60062917 -0.5955623  0.6192783 -0.3836310  0.06871570  1.7804657  0.5965411 -1.62625036  1.27706937  0.72860273
 [4,] -0.07328279 -0.1738157  1.4965579 -1.1686115 -0.06954318 -1.0171604 -0.3283916  0.63493884  0.72039689 -0.20889111
 [5,]  0.78747874 -0.8607320  0.4828322  0.6558960 -0.22064430  0.2001473  0.7725701  0.06155196  0.09011719 -1.01902968
 [6,]  0.17988720 -0.8520000 -0.5911523  1.8100573 -0.56108621  0.0151522 -0.2484345 -0.80695513 -0.18532984 -1.75115335
 [7,]  1.03943492  0.4880532 -2.7588922 -0.1336166 -1.28424057  1.2871333  0.7595750 -0.55615677 -1.67765572 -0.05440992
 [8,]  1.12394474  1.4890366 -1.6034648 -1.4315445 -0.23052386 -0.3536677 -0.8694188 -0.53689507 -1.11510406 -1.39108817
 [9,] -0.30393916  0.6216156  0.1559639  1.2297105 -0.29439390  1.8224512 -0.4457441 -0.32814665  0.55487894 -0.22602598
[10,]  1.18424722 -0.1816049 -2.2975095 -0.7537477  0.86647524 -0.8710603  0.3351710 -0.79632184 -0.56254688 -0.77449398
> x
             [,1]       [,2]       [,3]       [,4]       [,5]       [,6]       [,7]        [,8]        [,9]       [,10]
 [1,]  0.86882569 -0.2409922  0.3859031  0.5818927 -1.5031033  0.8752261 -0.5173105 -2.18244988 -0.28817656 -0.63941237
 [2,]  1.54114079  0.7227511  0.7856277  0.8512048 -1.3244295 -2.1668744  0.7017532 -0.40086348 -0.41251883  0.42924986
 [3,]  0.60062917 -0.5955623  0.6192783 -0.3836310  0.0687157  1.7804657  0.5965411 -1.62625036  1.27706937  0.72860273
 [4,] -0.07328279 -0.1738157  1.4965579 -1.1686115         NA -1.0171604 -0.3283916  0.63493884  0.72039689 -0.20889111
 [5,]  0.78747874 -0.8607320  0.4828322         NA -0.2206443  0.2001473  0.7725701  0.06155196  0.09011719 -1.01902968
 [6,]  0.17988720 -0.8520000 -0.5911523  1.8100573 -0.5610862  0.0151522 -0.2484345 -0.80695513 -0.18532984 -1.75115335
 [7,]  1.03943492  0.4880532 -2.7588922 -0.1336166 -1.2842406  1.2871333  0.7595750 -0.55615677 -1.67765572 -0.05440992
 [8,]  1.12394474  1.4890366 -1.6034648 -1.4315445 -0.2305239 -0.3536677 -0.8694188 -0.53689507 -1.11510406 -1.39108817
 [9,] -0.30393916  0.6216156  0.1559639  1.2297105 -0.2943939  1.8224512 -0.4457441 -0.32814665  0.55487894 -0.22602598
[10,]  1.18424722 -0.1816049 -2.2975095 -0.7537477  0.8664752 -0.8710603  0.3351710 -0.79632184 -0.56254688 -0.77449398

voici un exemple du 2ème ...

x = matrix(rnorm(1000),100,10)
x.missing = x > 1
x[x.missing] = NA

complete.cases(x)

  [1]  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE
 [22] FALSE FALSE  TRUE FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [43]  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [64] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
 [85] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE

Au moins k = 3 lignes complètes sont satisfaites, il peut donc imputer pour k = 3.

> head(knnImputation(x,k=3))
            [,1]       [,2]       [,3]       [,4]       [,5]       [,6]       [,7]       [,8]        [,9]       [,10]
[1,]  0.01817557 -2.8141502  0.3929944  0.1495092 -1.7218396  0.4159133 -0.8438809  0.6599224 -0.02451113 -1.14541016
[2,]  0.51969964 -0.4976021 -0.1495392 -0.6448184 -0.6066386 -1.6210476 -0.3118440  0.2477855 -0.30986749  0.32424673
...
tapoter
la source
5
require(imputation)
x = matrix(rnorm(100),10,10)
x.missing = x > 1
x[x.missing] = NA
y <- kNNImpute(x, 3)

attributes(y)

$names
[1] "x"              "missing.matrix"

y$x

> x (matrice d'origine)

             [,1]        [,2]       [,3]       [,4]        [,5]        [,6]        [,7]
 [1,]  0.38515909  0.52661156  0.6164138  0.3095225  0.55909716 -1.16543168 -0.70714440
 [2,] -0.39222402 -1.29703536  0.4429824 -1.3950116          NA -0.46841443 -0.57563472
 [3,] -2.04467869 -0.52022405         NA  0.7219057 -0.93573417 -1.51490638  0.62356689
 [4,] -1.08684345  0.63083074         NA  0.5603603  0.48583414          NA -0.69447183
 [5,]  0.30116921  0.25127476 -0.2132160         NA -1.63484823 -0.58266488  0.34432576
 [6,]  0.82152305 -0.12900915 -1.8498997  0.8012059          NA -0.14987133 -1.11232289
 [7,]  0.27912763 -0.68923032 -0.2355762 -0.2541675 -0.14181344 -0.08519797  0.13061823
 [8,]  0.06653984 -0.87521539 -0.0980306 -0.4350224  0.05021324 -1.66963624 -0.09204772
 [9,]  0.12687240 -0.62717646 -0.1258722         NA -0.86913445  0.68365036          NA
[10,]  0.56680502  0.03318012  0.1411861  0.6573134 -0.14747073          NA -1.37949278
             [,8]        [,9]       [,10]
 [1,] -2.67066748          NA -0.64370528
 [2,] -1.26864936 -1.95692064  0.28917897
 [3,] -0.27816124 -0.20332695 -1.29456054
 [4,] -1.10917662 -0.59598910 -0.32475962
 [5,] -0.15448822  0.71667444 -1.60827152
 [6,] -0.66691445  0.05396037  0.04074923
 [7,]  0.05644956  0.99416556 -0.77808427
 [8,] -0.32294266          NA -2.50933697
 [9,] -0.67226044          NA          NA
[10,] -0.84866945 -0.54318570          NA

> y $ x (matrice imputée)

            [,1]        [,2]        [,3]        [,4]        [,5]        [,6]        [,7]
 [1,]  0.38515909  0.52661156  0.61641378  0.30952251  0.55909716 -1.16543168 -0.70714440
 [2,] -0.39222402 -1.29703536  0.44298237 -1.39501160 -0.22157531 -0.46841443 -0.57563472
 [3,] -2.04467869 -0.52022405  0.08298882  0.72190573 -0.93573417 -1.51490638  0.62356689
 [4,] -1.08684345  0.63083074 -0.66707695  0.56036034  0.48583414 -0.98956026 -0.69447183
 [5,]  0.30116921  0.25127476 -0.21321600 -0.02480909 -1.63484823 -0.58266488  0.34432576
 [6,]  0.82152305 -0.12900915 -1.84989965  0.80120592 -0.76323053 -0.14987133 -1.11232289
 [7,]  0.27912763 -0.68923032 -0.23557619 -0.25416751 -0.14181344 -0.08519797  0.13061823
 [8,]  0.06653984 -0.87521539 -0.09803060 -0.43502238  0.05021324 -1.66963624 -0.09204772
 [9,]  0.12687240 -0.62717646 -0.12587221  0.00000000 -0.86913445  0.68365036  0.00000000
[10,]  0.56680502  0.03318012  0.14118610  0.65731337 -0.14747073  0.00000000 -1.37949278
             [,8]        [,9]       [,10]
 [1,] -2.67066748  0.04286260 -0.64370528
 [2,] -1.26864936 -1.95692064  0.28917897
 [3,] -0.27816124 -0.20332695 -1.29456054
 [4,] -1.10917662 -0.59598910 -0.32475962
 [5,] -0.15448822  0.71667444 -1.60827152
 [6,] -0.66691445  0.05396037  0.04074923
 [7,]  0.05644956  0.99416556 -0.77808427
 [8,] -0.32294266  0.00000000 -2.50933697
 [9,] -0.67226044  0.00000000  0.00000000
[10,] -0.84866945 -0.54318570  0.00000000

Il a imputé les valeurs qu'il peut. Ceux qui ne peuvent pas être imputés sont mis à zéro.

Eric Peterson
la source
Il semble que les imputationpackages n'existent plus (pour la version R 3.1.2)
Ehsan M. Kermani
c'est dans github, google.
marbel
5

Le package d'imputation n'est plus sur CRAN.

Un package autre que DMwR qui offre une fonction d'imputation kNN est VIM.

Aussi facile à utiliser:

library("VIM")
kNN(x, k=3)
stats0007
la source
1
install.packages("DMwR")*  # for use of knnImputation.

require(DMwR)
x  = matrix(rnorm(100), 10, 10)
x.missing= x >1
x[x.missing] = NA
complete.cases(x)
y <- knnImputation(x, 3)
user89870
la source
0

La raison pour laquelle R ne peut pas imputer est parce que dans de nombreux cas, plus d'un attribut dans une ligne est manquant et qu'il ne peut donc pas calculer le plus proche voisin. Ce que vous pouvez faire alternativement est soit imputer des variables d'intervalle avec des probabilités projetées à partir d'une distribution normale (ou si son asymétrie utilise une distribution Gamma qui a une asymétrie similaire). et utiliser un arbre de décision pour prédire les valeurs manquantes dans le cas d'une variable de classe.

Sarath Sunil
la source