Pourquoi la régression linéaire et l'ANOVA donnent-elles une valeur différente si l'on considère l'interaction entre les variables?

22

J'essayais d'ajuster une série de données temporelles (sans répliques) en utilisant un modèle de régression. Les données se présentent comme suit:

> xx.2
          value time treat
    1  8.788269    1     0
    2  7.964719    6     0
    3  8.204051   12     0
    4  9.041368   24     0
    5  8.181555   48     0
    6  8.041419   96     0
    7  7.992336  144     0
    8  7.948658    1     1
    9  8.090211    6     1
    10 8.031459   12     1
    11 8.118308   24     1
    12 7.699051   48     1
    13 7.537120   96     1
    14 7.268570  144     1

En raison du manque de répétitions, je traite le temps comme une variable continue. La colonne "traiter" affiche respectivement les données de cas et de contrôle.

Tout d'abord, j'adapte le modèle "valeur = temps * traiter" avec "lm" dans R:

summary(lm(value~time*treat,data=xx.2))

Call:
lm(formula = value ~ time * treat, data = xx.2)

Residuals:
     Min       1Q   Median       3Q      Max 
-0.50627 -0.12345  0.00296  0.04124  0.63785 

Coefficients:
             Estimate Std. Error t value Pr(>|t|)    
(Intercept)  8.493476   0.156345  54.325 1.08e-13 ***
time        -0.003748   0.002277  -1.646   0.1307    
treat       -0.411271   0.221106  -1.860   0.0925 .  
time:treat  -0.001938   0.003220  -0.602   0.5606    

La valeur du temps et du traitement n'est pas significative.

Avec anova, j'ai obtenu des résultats différents:

 summary(aov(value~time*treat,data=xx.2))
            Df Sum Sq Mean Sq F value Pr(>F)  
time         1 0.7726  0.7726   8.586 0.0150 *
treat        1 0.8852  0.8852   9.837 0.0106 *
time:treat   1 0.0326  0.0326   0.362 0.5606  
Residuals   10 0.8998  0.0900                 

La valeur du temps et du traitement a changé.

Avec la régression linéaire, si j'ai raison, cela signifie que le temps et le traitement n'ont aucune influence significative sur la valeur, mais avec l'ANOVA, cela signifie que le temps et le traitement ont une influence significative sur la valeur.

Quelqu'un pourrait-il m'expliquer pourquoi il y a une différence entre ces deux méthodes et laquelle utiliser?

shao
la source
3
Vous voudrez peut-être rechercher les différents types de sommes de carrés. Plus précisément, je pense que la régression linéaire renvoie une somme de carrés de type III, tandis que anova renvoie un type différent.
supposé normal
3
Si vous enregistrez les résultats de lmet aovvous pouvez vérifier qu'ils produisent des ajustements identiques; par exemple, comparer leurs résidus avec la residualsfonction ou examiner leurs coefficients (la $coefficientsfente dans les deux cas).
whuber

Réponses:

18

L'ajustement pour lm () et aov () est identique mais le rapport est différent. Les tests t sont l'impact marginal des variables en question, compte tenu de la présence de toutes les autres variables. Les tests F sont séquentiels - ils testent donc l'importance du temps en présence de rien d'autre que l'interception, de traiter en présence de rien d'autre que l'interception et le temps, et de l'interaction en présence de tout ce qui précède.

En supposant que vous vous intéressez à l'importance du traitement, je suggère que vous adaptiez deux modèles, un avec et un sans, comparez les deux en mettant les deux modèles dans anova (), et utilisez ce test F. Cela permettra de tester le traitement et l'interaction simultanément.

Considérer ce qui suit:

> xx.2 <- as.data.frame(matrix(c(8.788269, 1, 0,
+ 7.964719, 6, 0,
+ 8.204051, 12, 0,
+ 9.041368, 24, 0,
+ 8.181555, 48, 0,
+ 8.041419, 96, 0,
+ 7.992336, 144, 0,
+ 7.948658, 1, 1,
+ 8.090211, 6, 1,
+ 8.031459, 12, 1,
+ 8.118308, 24, 1,
+ 7.699051, 48, 1,
+ 7.537120, 96, 1,
+ 7.268570, 144, 1), byrow=T, ncol=3))
> names(xx.2) <- c("value", "time", "treat")
> 
> mod1 <- lm(value~time*treat, data=xx.2)
> anova(mod1)
Analysis of Variance Table

Response: value
           Df  Sum Sq Mean Sq F value  Pr(>F)  
time        1 0.77259 0.77259  8.5858 0.01504 *
treat       1 0.88520 0.88520  9.8372 0.01057 *
time:treat  1 0.03260 0.03260  0.3623 0.56064  
Residuals  10 0.89985 0.08998                  
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1   1 
> mod2 <- aov(value~time*treat, data=xx.2)
> anova(mod2)
Analysis of Variance Table

Response: value
           Df  Sum Sq Mean Sq F value  Pr(>F)  
time        1 0.77259 0.77259  8.5858 0.01504 *
treat       1 0.88520 0.88520  9.8372 0.01057 *
time:treat  1 0.03260 0.03260  0.3623 0.56064  
Residuals  10 0.89985 0.08998                  
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1   1 
> summary(mod2)
            Df Sum Sq Mean Sq F value Pr(>F)  
time         1 0.7726  0.7726   8.586 0.0150 *
treat        1 0.8852  0.8852   9.837 0.0106 *
time:treat   1 0.0326  0.0326   0.362 0.5606  
Residuals   10 0.8998  0.0900                 
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1   1 
> summary(mod1)

Call:
lm(formula = value ~ time * treat, data = xx.2)

Residuals:
     Min       1Q   Median       3Q      Max 
-0.50627 -0.12345  0.00296  0.04124  0.63785 

Coefficients:
             Estimate Std. Error t value Pr(>|t|)    
(Intercept)  8.493476   0.156345  54.325 1.08e-13 ***
time        -0.003748   0.002277  -1.646   0.1307    
treat       -0.411271   0.221106  -1.860   0.0925 .  
time:treat  -0.001938   0.003220  -0.602   0.5606    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1   1 

Residual standard error: 0.3 on 10 degrees of freedom
Multiple R-squared: 0.6526,     Adjusted R-squared: 0.5484 
F-statistic: 6.262 on 3 and 10 DF,  p-value: 0.01154 
Peter Ellis
la source
Merci pour une explication approfondie, cela me rappelle l'ANCOVA (analyse de covariance). La première étape de l'ANCOVA consiste à tester l'interaction entre le facteur catégoriel et la covariable pour voir s'ils ont une pente identique pour les deux conditions. C'est assez similaire à ce que j'ai fait ici. Dans ANCOVA, il donne la même valeur d'interaction dans le test t et le test F car l'interaction est le dernier terme de aov.
shao
17

tpβ=0Fanova()

tF

anova()Xyβ

gregmacfarlane
la source
2

Les deux réponses ci-dessus sont excellentes, mais j'ai pensé en ajouter un peu plus. Une autre pépite d'informations peut être glanée d' ici .

Lorsque vous signalez les lm()résultats avec le terme d'interaction, vous dites quelque chose comme: "le traitement 1 est différent du traitement 0 (bêta! = 0, p = 0,0925), lorsque le temps est défini sur la valeur de base de 1 ". Alors que les anova()résultats ( comme mentionné précédemment ) ignorent toutes les autres variables et ne se préoccupent que des différences de variance.

Vous pouvez le prouver en supprimant votre terme d'interaction et en utilisant un modèle simple avec seulement deux effets principaux ( m1 ):

> m1 = lm(value~time+treat,data=dat)
> summary(m1)

Call:
lm(formula = value ~ time + treat, data = dat)

Residuals:
     Min       1Q   Median       3Q      Max 
-0.54627 -0.10533 -0.04574  0.11975  0.61528 

Coefficients:
             Estimate Std. Error t value Pr(>|t|)    
(Intercept)  8.539293   0.132545  64.426 1.56e-15 ***
time        -0.004717   0.001562  -3.019  0.01168 *  
treat       -0.502906   0.155626  -3.232  0.00799 ** 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.2911 on 11 degrees of freedom
Multiple R-squared:   0.64, Adjusted R-squared:  0.5746 
F-statistic: 9.778 on 2 and 11 DF,  p-value: 0.003627

> anova(m1)
Analysis of Variance Table

Response: value
          Df  Sum Sq Mean Sq F value   Pr(>F)   
time       1 0.77259 0.77259  9.1142 0.011677 * 
treat      1 0.88520 0.88520 10.4426 0.007994 **
Residuals 11 0.93245 0.08477                    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Dans ce cas, nous voyons que les valeurs de p rapportées sont les mêmes; c'est parce que dans le cas de ce modèle plus simple,

Constantino
la source
Cette réponse semble malheureusement inachevée. Toujours +1 pour le lien et pour mentionner que l'effet est dû à différents schémas de codage.
amibe dit Réintégrer Monica
2
Il faut également ajouter cela summary(lm)et anova(lm)ne donnera pas toujours un résultat identique s'il n'y a pas de terme d'interaction. Il se trouve que dans ces données timeet treatsont orthogonales, les sommes de carrés de type I (séquentiel) et III (marginal) donnent des résultats identiques.
amibe dit Réintégrer Monica
2
  • La différence a à voir avec les comparaisons par paire de types de modèles en cascade.
  • De plus, la fonction aov () a un problème avec la façon dont elle choisit les degrés de liberté. Il semble mélanger deux concepts: 1) la somme des carrés des comparaisons pas à pas, 2) les degrés de liberté par rapport à une image globale.

REPRODUCTION DU PROBLÈME

> data <- list(value = c (8.788269,7.964719,8.204051,9.041368,8.181555,8.0414149,7.992336,7.948658,8.090211,8.031459,8.118308,7.699051,7.537120,7.268570), time = c(1,6,12,24,48,96,144,1,6,12,24,48,96,144), treat = c(0,0,0,0,0,0,0,1,1,1,1,1,1,1) )
> summary( lm(value ~ treat*time, data=data) )
> summary( aov(value ~ 1 + treat + time + I(treat*time),data=data) )

QUELQUES MODÈLES UTILISÉS DANS L'EXPLICATION

#all linear models used in the explanation below
> model_0                      <- lm(value ~ 1, data)
> model_time                   <- lm(value ~ 1 + time, data)
> model_treat                  <- lm(value ~ 1 + treat, data)
> model_interaction            <- lm(value ~ 1 + I(treat*time), data)
> model_treat_time             <- lm(value ~ 1 + treat + time, data)
> model_treat_interaction      <- lm(value ~ 1 + treat + I(treat*time), data)
> model_time_interaction       <- lm(value ~ 1 + time + I(treat*time), data)
> model_treat_time_interaction <- lm(value ~ 1 + time + treat + I(treat*time), data)

FONCTIONNEMENT DE LM T_TEST ET RELATION AVEC F-TEST

# the t-test with the estimator and it's variance, mean square error, is
# related to the F test of pairwise comparison of models by dropping 1
# model parameter

> anova(model_treat_time_interaction, model_time_interaction)

Analysis of Variance Table

Model 1: value ~ 1 + time + treat + I(treat * time)
Model 2: value ~ 1 + time + I(treat * time)
  Res.Df     RSS Df Sum of Sq      F  Pr(>F)  
1     10 0.89985                              
2     11 1.21118 -1  -0.31133 3.4598 0.09251 .
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1   1

> anova(model_treat_time_interaction, model_treat_interaction)

Analysis of Variance Table

Model 1: value ~ 1 + time + treat + I(treat * time)
Model 2: value ~ 1 + treat + I(treat * time)
  Res.Df     RSS Df Sum of Sq      F Pr(>F)
1     10 0.89985                           
2     11 1.14374 -1   -0.2439 2.7104 0.1307

> anova(model_treat_time_interaction, model_treat_time)

Analysis of Variance Table

Model 1: value ~ 1 + time + treat + I(treat * time)
Model 2: value ~ 1 + treat + time
  Res.Df     RSS Df Sum of Sq      F Pr(>F)
1     10 0.89985                           
2     11 0.93245 -1 -0.032599 0.3623 0.5606

> # which is the same as
> drop1(model_treat_time_interaction, scope  = ~time+treat+I(treat*time), test="F")

Single term deletions

Model:
value ~ 1 + time + treat + I(treat * time)
                Df Sum of Sq     RSS     AIC F value  Pr(>F)  
<none>                       0.89985 -30.424                  
time             1  0.243896 1.14374 -29.067  2.7104 0.13072  
treat            1  0.311333 1.21118 -28.264  3.4598 0.09251 .
I(treat * time)  1  0.032599 0.93245 -31.926  0.3623 0.56064  
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1   1

COMMENT AOV FONCTIONNE ET CHOISIT DF DANS LES F-TESTS

> #the aov function makes stepwise additions/drops
> 
> #first the time, then treat, then the interaction
> anova(model_0, model_time)

Analysis of Variance Table

Model 1: value ~ 1
Model 2: value ~ 1 + time
  Res.Df    RSS Df Sum of Sq      F  Pr(>F)  
1     13 2.5902                              
2     12 1.8176  1    0.7726 5.1006 0.04333 *
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1   1

> anova(model_time, model_treat_time)

Analysis of Variance Table

Model 1: value ~ 1 + time
Model 2: value ~ 1 + treat + time
  Res.Df     RSS Df Sum of Sq      F   Pr(>F)   
1     12 1.81764                                
2     11 0.93245  1    0.8852 10.443 0.007994 **
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1   1

> anova(model_treat_time, model_treat_time_interaction)

Analysis of Variance Table

Model 1: value ~ 1 + treat + time
Model 2: value ~ 1 + time + treat + I(treat * time)
  Res.Df     RSS Df Sum of Sq      F Pr(>F)
1     11 0.93245                           
2     10 0.89985  1  0.032599 0.3623 0.5606

> 
> # note that the sum of squares for within model variation is the same
> # but the F values and p-values are not the same because the aov 
> # function somehow chooses to use the degrees of freedom in the 
> # complete model in all stepwise changes
>

NOTE IMPORTANTE

> # Although the p and F values do not exactly match, it is this effect
> # of order and selection of cascading or not in model comparisons. 
> # An important note to make is that the comparisons are made by 
> # stepwise additions and changing the order of variables has an 
> # influence on the outcome!
>
> # Additional note changing the order of 'treat' and 'time' has no 
> # effect because they are not correlated

> summary( aov(value ~ 1 + treat + time +I(treat*time), data=data) )

        Df Sum Sq Mean Sq F value Pr(>F)  
treat            1 0.8852  0.8852   9.837 0.0106 *
time             1 0.7726  0.7726   8.586 0.0150 *
I(treat * time)  1 0.0326  0.0326   0.362 0.5606  
Residuals       10 0.8998  0.0900                 
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1   1

> summary( aov(value ~ 1 + I(treat*time) + treat + time, data=data) )

                Df Sum Sq Mean Sq F value  Pr(>F)   
I(treat * time)  1 1.3144  1.3144  14.606 0.00336 **
treat            1 0.1321  0.1321   1.469 0.25343   
time             1 0.2439  0.2439   2.710 0.13072   
Residuals       10 0.8998  0.0900                   
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1   1

> # This is an often forgotten quirck 
> # best is to use manual comparisons such that you know
> # and understand your hypotheses
> # (which is often forgotten in the click and
> #     point anova modelling tools)
> #
> # anova(model1, model2) 
> #     or use 
> # stepAIC from the MASS library
Sextus Empiricus
la source