D'après votre description, cela semble parfaitement logique: non seulement vous pouvez calculer la courbe ROC moyenne, mais aussi la variance autour d'elle pour construire des intervalles de confiance. Cela devrait vous donner une idée de la stabilité de votre modèle.
Par exemple, comme ceci:
Ici, je mets des courbes ROC individuelles ainsi que la courbe moyenne et les intervalles de confiance. Il y a des domaines où les courbes sont d'accord, donc nous avons moins de variance, et il y a des domaines où ils ne sont pas d'accord.
Pour un CV répété, vous pouvez simplement le répéter plusieurs fois et obtenir la moyenne totale sur tous les plis individuels:
Il est assez similaire à l'image précédente, mais donne des estimations plus stables (c'est-à-dire fiables) de la moyenne et de la variance.
Voici le code pour obtenir l'intrigue:
import matplotlib.pyplot as plt
import numpy as np
from scipy import interp
from sklearn.datasets import make_classification
from sklearn.cross_validation import KFold
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import roc_curve
X, y = make_classification(n_samples=500, random_state=100, flip_y=0.3)
kf = KFold(n=len(y), n_folds=10)
tprs = []
base_fpr = np.linspace(0, 1, 101)
plt.figure(figsize=(5, 5))
for i, (train, test) in enumerate(kf):
model = LogisticRegression().fit(X[train], y[train])
y_score = model.predict_proba(X[test])
fpr, tpr, _ = roc_curve(y[test], y_score[:, 1])
plt.plot(fpr, tpr, 'b', alpha=0.15)
tpr = interp(base_fpr, fpr, tpr)
tpr[0] = 0.0
tprs.append(tpr)
tprs = np.array(tprs)
mean_tprs = tprs.mean(axis=0)
std = tprs.std(axis=0)
tprs_upper = np.minimum(mean_tprs + std, 1)
tprs_lower = mean_tprs - std
plt.plot(base_fpr, mean_tprs, 'b')
plt.fill_between(base_fpr, tprs_lower, tprs_upper, color='grey', alpha=0.3)
plt.plot([0, 1], [0, 1],'r--')
plt.xlim([-0.01, 1.01])
plt.ylim([-0.01, 1.01])
plt.ylabel('True Positive Rate')
plt.xlabel('False Positive Rate')
plt.axes().set_aspect('equal', 'datalim')
plt.show()
Pour les CV répétés:
idx = np.arange(0, len(y))
for j in np.random.randint(0, high=10000, size=10):
np.random.shuffle(idx)
kf = KFold(n=len(y), n_folds=10, random_state=j)
for i, (train, test) in enumerate(kf):
model = LogisticRegression().fit(X[idx][train], y[idx][train])
y_score = model.predict_proba(X[idx][test])
fpr, tpr, _ = roc_curve(y[idx][test], y_score[:, 1])
plt.plot(fpr, tpr, 'b', alpha=0.05)
tpr = interp(base_fpr, fpr, tpr)
tpr[0] = 0.0
tprs.append(tpr)
Source d'inspiration: http://scikit-learn.org/stable/auto_examples/model_selection/plot_roc_crossval.html