Impossible de faire fonctionner correctement ce réseau d'auto-encodeur (avec les couches convolutionnelles et maxpool)

9

Les réseaux de codage automatique semblent être beaucoup plus délicats que les réseaux MLP classificateurs normaux. Après plusieurs tentatives d'utilisation de la lasagne, tout ce que j'obtiens dans la sortie reconstruite ressemble à son mieux à une moyenne floue de toutes les images de la base de données MNIST sans distinction sur ce qu'est réellement le chiffre d'entrée.

La structure des réseaux que j'ai choisie sont les couches en cascade suivantes:

  1. couche d'entrée (28x28)
  2. Couche convolutionnelle 2D, taille de filtre 7x7
  3. Couche de pool max, taille 3x3, foulée 2x2
  4. Couche d'aplatissement dense (entièrement connectée), 10 unités (c'est le goulot d'étranglement)
  5. Couche dense (entièrement connectée), 121 unités
  6. Remodeler la couche en 11x11
  7. Couche convolutionnelle 2D, taille de filtre 3x3
  8. Couche de conversion ascendante 2D facteur 2
  9. Couche convolutionnelle 2D, taille de filtre 3x3
  10. Couche de conversion ascendante 2D facteur 2
  11. Couche convolutionnelle 2D, taille de filtre 5x5
  12. Mise en commun maximale des fonctionnalités (de 31x28x28 à 28x28)

Toutes les couches convolutives 2D ont les biais déliés, les activations sigmoïdes et 31 filtres.

Toutes les couches entièrement connectées ont des activations sigmoïdes.

La fonction de perte utilisée est une erreur quadratique , la fonction de mise à jour l'est adagrad. La longueur du morceau pour l'apprentissage est de 100 échantillons, multipliés pour 1000 époques.

Ce qui suit est une illustration du problème: la rangée supérieure est quelques échantillons définis comme entrées du réseau, la rangée inférieure est la reconstruction:

entrée et sortie de l'encodeur automatique

Juste pour être complet, voici le code que j'ai utilisé:

import theano.tensor as T
import theano
import sys
sys.path.insert(0,'./Lasagne') # local checkout of Lasagne
import lasagne
from theano import pp
from theano import function
import gzip
import numpy as np
from sklearn.preprocessing import OneHotEncoder
import matplotlib.pyplot as plt
def load_mnist():

    def load_mnist_images(filename):
        with gzip.open(filename, 'rb') as f:
            data = np.frombuffer(f.read(), np.uint8, offset=16)
        # The inputs are vectors now, we reshape them to monochrome 2D images,
        # following the shape convention: (examples, channels, rows, columns)
        data = data.reshape(-1, 1, 28, 28)
        # The inputs come as bytes, we convert them to float32 in range [0,1].
        # (Actually to range [0, 255/256], for compatibility to the version
        # provided at http://deeplearning.net/data/mnist/mnist.pkl.gz.)
        return data / np.float32(256)

    def load_mnist_labels(filename):
        # Read the labels in Yann LeCun's binary format.
        with gzip.open(filename, 'rb') as f:
            data = np.frombuffer(f.read(), np.uint8, offset=8)
        # The labels are vectors of integers now, that's exactly what we want.
        return data

    X_train = load_mnist_images('train-images-idx3-ubyte.gz')
    y_train = load_mnist_labels('train-labels-idx1-ubyte.gz')
    X_test = load_mnist_images('t10k-images-idx3-ubyte.gz')
    y_test = load_mnist_labels('t10k-labels-idx1-ubyte.gz')
    return X_train, y_train, X_test, y_test

def plot_filters(conv_layer):
    W = conv_layer.get_params()[0]
    W_fn = theano.function([],W)
    params = W_fn()
    ks = np.squeeze(params)
    kstack = np.vstack(ks)
    plt.imshow(kstack,interpolation='none')
    plt.show()

def main():

    #theano.config.exception_verbosity="high"
    #theano.config.optimizer='None'

    X_train, y_train, X_test, y_test = load_mnist()
    ohe = OneHotEncoder()

    y_train = ohe.fit_transform(np.expand_dims(y_train,1)).toarray()
    chunk_len = 100
    visamount = 10
    num_epochs = 1000
    num_filters=31
    dropout_p=.0
    print "X_train.shape",X_train.shape,"y_train.shape",y_train.shape
    input_var = T.tensor4('X')
    output_var = T.tensor4('X')
    conv_nonlinearity = lasagne.nonlinearities.sigmoid
    net = lasagne.layers.InputLayer((chunk_len,1,28,28), input_var)
    conv1 = net = lasagne.layers.Conv2DLayer(net,num_filters,(7,7),nonlinearity=conv_nonlinearity,untie_biases=True)
    net = lasagne.layers.MaxPool2DLayer(net,(3,3),stride=(2,2))
    net = lasagne.layers.DropoutLayer(net,p=dropout_p)
    #conv2_layer = lasagne.layers.Conv2DLayer(dropout_layer,num_filters,(3,3),nonlinearity=conv_nonlinearity)
    #pool2_layer = lasagne.layers.MaxPool2DLayer(conv2_layer,(3,3),stride=(2,2))
    net = lasagne.layers.DenseLayer(net,10,nonlinearity=lasagne.nonlinearities.sigmoid)

    #augment_layer1 = lasagne.layers.DenseLayer(reduction_layer,33,nonlinearity=lasagne.nonlinearities.sigmoid)
    net = lasagne.layers.DenseLayer(net,121,nonlinearity=lasagne.nonlinearities.sigmoid)

    net = lasagne.layers.ReshapeLayer(net,(chunk_len,1,11,11))

    net = lasagne.layers.Conv2DLayer(net,num_filters,(3,3),nonlinearity=conv_nonlinearity,untie_biases=True)
    net = lasagne.layers.Upscale2DLayer(net,2)

    net = lasagne.layers.Conv2DLayer(net,num_filters,(3,3),nonlinearity=conv_nonlinearity,untie_biases=True)
    #pool_after0 = lasagne.layers.MaxPool2DLayer(conv_after1,(3,3),stride=(2,2))
    net = lasagne.layers.Upscale2DLayer(net,2)

    net = lasagne.layers.DropoutLayer(net,p=dropout_p)

    #conv_after2 = lasagne.layers.Conv2DLayer(upscale_layer1,num_filters,(3,3),nonlinearity=conv_nonlinearity,untie_biases=True)
    #pool_after1 = lasagne.layers.MaxPool2DLayer(conv_after2,(3,3),stride=(1,1))
    #upscale_layer2 = lasagne.layers.Upscale2DLayer(pool_after1,4)

    net = lasagne.layers.Conv2DLayer(net,num_filters,(5,5),nonlinearity=conv_nonlinearity,untie_biases=True)
    net = lasagne.layers.FeaturePoolLayer(net,num_filters,pool_function=theano.tensor.max)
    print "output_shape:",lasagne.layers.get_output_shape(net)
    params = lasagne.layers.get_all_params(net, trainable=True)
    prediction = lasagne.layers.get_output(net)
    loss = lasagne.objectives.squared_error(prediction, output_var)
    #loss = lasagne.objectives.binary_crossentropy(prediction, output_var)
    aggregated_loss = lasagne.objectives.aggregate(loss)
    updates = lasagne.updates.adagrad(aggregated_loss,params)
    train_fn = theano.function([input_var, output_var], loss, updates=updates)

    test_prediction = lasagne.layers.get_output(net, deterministic=True)
    predict_fn = theano.function([input_var], test_prediction)

    print "starting training..."
    for epoch in range(num_epochs):
        selected = list(set(np.random.random_integers(0,59999,chunk_len*4)))[:chunk_len]
        X_train_sub = X_train[selected,:]
        _loss = train_fn(X_train_sub, X_train_sub)
        print("Epoch %d: Loss %g" % (epoch + 1, np.sum(_loss) / len(X_train)))
        """
        chunk = X_train[0:chunk_len,:,:,:]
        result = predict_fn(chunk)
        vis1 = np.hstack([chunk[j,0,:,:] for j in range(visamount)])
        vis2 = np.hstack([result[j,0,:,:] for j in range(visamount)])
        plt.imshow(np.vstack([vis1,vis2]))
        plt.show()
        """
    print "done."

    chunk = X_train[0:chunk_len,:,:,:]
    result = predict_fn(chunk)
    print "chunk.shape",chunk.shape
    print "result.shape",result.shape
    plot_filters(conv1)
    for i in range(chunk_len/visamount):
        vis1 = np.hstack([chunk[i*visamount+j,0,:,:] for j in range(visamount)])
        vis2 = np.hstack([result[i*visamount+j,0,:,:] for j in range(visamount)])
        plt.imshow(np.vstack([vis1,vis2]))
        plt.show()
    import ipdb; ipdb.set_trace()

if __name__ == "__main__":
    main()

Des idées sur la façon d'améliorer ce réseau pour obtenir un autoencodeur fonctionnant raisonnablement?

Problème résolu!

Avec une implémentation assez différente, en utilisant un redresseur qui fuit au lieu d'une fonction sigmoïde dans les couches convolutives, seulement 2 (!!) nœuds dans la couche goulot d'étranglement et des convolutions avec des noyaux 1x1 à la toute fin.

Voici le résultat d'une reconstruction:

entrez la description de l'image ici

Code:

import theano.tensor as T
import theano
import sys
sys.path.insert(0,'./Lasagne') # local checkout of Lasagne
import lasagne
from theano import pp
from theano import function
import theano.tensor.nnet
import gzip
import numpy as np
from sklearn.preprocessing import OneHotEncoder
import matplotlib.pyplot as plt
def load_mnist():

    def load_mnist_images(filename):
        with gzip.open(filename, 'rb') as f:
            data = np.frombuffer(f.read(), np.uint8, offset=16)
        # The inputs are vectors now, we reshape them to monochrome 2D images,
        # following the shape convention: (examples, channels, rows, columns)
        data = data.reshape(-1, 1, 28, 28)
        # The inputs come as bytes, we convert them to float32 in range [0,1].
        # (Actually to range [0, 255/256], for compatibility to the version
        # provided at http://deeplearning.net/data/mnist/mnist.pkl.gz.)
        return data / np.float32(256)

    def load_mnist_labels(filename):
        # Read the labels in Yann LeCun's binary format.
        with gzip.open(filename, 'rb') as f:
            data = np.frombuffer(f.read(), np.uint8, offset=8)
        # The labels are vectors of integers now, that's exactly what we want.
        return data

    X_train = load_mnist_images('train-images-idx3-ubyte.gz')
    y_train = load_mnist_labels('train-labels-idx1-ubyte.gz')
    X_test = load_mnist_images('t10k-images-idx3-ubyte.gz')
    y_test = load_mnist_labels('t10k-labels-idx1-ubyte.gz')
    return X_train, y_train, X_test, y_test

def main():

    X_train, y_train, X_test, y_test = load_mnist()
    ohe = OneHotEncoder()

    y_train = ohe.fit_transform(np.expand_dims(y_train,1)).toarray()
    chunk_len = 100
    num_epochs = 10000
    num_filters=7
    input_var = T.tensor4('X')
    output_var = T.tensor4('X')
    #conv_nonlinearity = lasagne.nonlinearities.sigmoid
    #conv_nonlinearity = lasagne.nonlinearities.rectify
    conv_nonlinearity = lasagne.nonlinearities.LeakyRectify(.1)
    softplus = theano.tensor.nnet.softplus
    #conv_nonlinearity = theano.tensor.nnet.softplus
    net = lasagne.layers.InputLayer((chunk_len,1,28,28), input_var)
    conv1 = net = lasagne.layers.Conv2DLayer(net,num_filters,(7,7),nonlinearity=conv_nonlinearity,untie_biases=True)
    net = lasagne.layers.MaxPool2DLayer(net,(3,3),stride=(2,2))
    net = lasagne.layers.DenseLayer(net,2,nonlinearity=lasagne.nonlinearities.sigmoid)
    net = lasagne.layers.DenseLayer(net,49,nonlinearity=lasagne.nonlinearities.sigmoid)
    net = lasagne.layers.ReshapeLayer(net,(chunk_len,1,7,7))
    net = lasagne.layers.Conv2DLayer(net,num_filters,(3,3),nonlinearity=conv_nonlinearity,untie_biases=True)
    net = lasagne.layers.MaxPool2DLayer(net,(3,3),stride=(1,1))
    net = lasagne.layers.Upscale2DLayer(net,4)
    net = lasagne.layers.Conv2DLayer(net,num_filters,(3,3),nonlinearity=conv_nonlinearity,untie_biases=True)
    net = lasagne.layers.MaxPool2DLayer(net,(3,3),stride=(1,1))
    net = lasagne.layers.Upscale2DLayer(net,4)
    net = lasagne.layers.Conv2DLayer(net,num_filters,(5,5),nonlinearity=conv_nonlinearity,untie_biases=True)
    net = lasagne.layers.Conv2DLayer(net,num_filters,(1,1),nonlinearity=conv_nonlinearity,untie_biases=True)
    net = lasagne.layers.FeaturePoolLayer(net,num_filters,pool_function=theano.tensor.max)
    net = lasagne.layers.Conv2DLayer(net,1,(1,1),nonlinearity=conv_nonlinearity,untie_biases=True)
    print "output shape:",net.output_shape
    params = lasagne.layers.get_all_params(net, trainable=True)
    prediction = lasagne.layers.get_output(net)
    loss = lasagne.objectives.squared_error(prediction, output_var)
    #loss = lasagne.objectives.binary_hinge_loss(prediction, output_var)
    aggregated_loss = lasagne.objectives.aggregate(loss)
    #updates = lasagne.updates.adagrad(aggregated_loss,params)
    updates = lasagne.updates.nesterov_momentum(aggregated_loss,params,0.5)#.005
    train_fn = theano.function([input_var, output_var], loss, updates=updates)

    test_prediction = lasagne.layers.get_output(net, deterministic=True)
    predict_fn = theano.function([input_var], test_prediction)

    print "starting training..."
    for epoch in range(num_epochs):
        selected = list(set(np.random.random_integers(0,59999,chunk_len*4)))[:chunk_len]
        X_train_sub = X_train[selected,:]
        _loss = train_fn(X_train_sub, X_train_sub)
        print("Epoch %d: Loss %g" % (epoch + 1, np.sum(_loss) / len(X_train)))
    print "done."

    chunk = X_train[0:chunk_len,:,:,:]
    result = predict_fn(chunk)
    print "chunk.shape",chunk.shape
    print "result.shape",result.shape
    visamount = 10
    for i in range(10):
        vis1 = np.hstack([chunk[i*visamount+j,0,:,:] for j in range(visamount)])
        vis2 = np.hstack([result[i*visamount+j,0,:,:] for j in range(visamount)])
        plt.imshow(np.vstack([vis1,vis2]))
        plt.show()

    import ipdb; ipdb.set_trace()
if __name__ == "__main__":
    main()
fstab
la source

Réponses:

4

Vous pouvez obtenir plus d'informations en visualisant les poids au lieu de simplement les reconstructions. J'ai eu un problème similaire lorsque mes préjugés étaient mal configurés. Tout ce qui suit est écrit sur la base de mes expériences d'écriture de ma propre bibliothèque d'apprentissage. Vous pouvez voir le code ici sur Github http://github.com/josephcatrambone/aij .

Voici une capture d'écran de mon programme lorsqu'il n'y a pas de biais. Cela ne fait peut-être que dix époques, car je suis pressé de terminer cet article:

Seuls les poids - pas de biais.

La mise à jour du poids se fait par ces opérations:

weights.add_i(positiveProduct.subtract(negativeProduct).elementMultiply(learningRate / (float) batchSize));
//visibleBias.add_i(batch.subtract(negativeVisibleProbabilities).meanRow().elementMultiply(learningRate));
//hiddenBias.add_i(positiveHiddenProbabilities.subtract(negativeHiddenProbabilities).meanRow().elementMultiply(learningRate));

Si je décommente le code de biais visible, j'obtiens ce résultat:

Correction du biais visible.

Si je bousille le signe du code de biais visible (en soustrayant au lieu d'ajouter):

visibleBias.subtract_i(batch.subtract(negativeVisibleProbabilities).meanRow().elementMultiply(learningRate));

Je reçois cette image:

Signe de biais inversé.

Quelles boules de neige et finalement atteignent quelque chose comme ce que vous avez ci-dessus. Vérifiez la signalisation de vos fonctions d'erreur.

Joseph Catrambone
la source