J'ai un exemple travaillé (en R), que j'essaie de mieux comprendre. J'utilise Limma pour créer un modèle linéaire et j'essaie de comprendre ce qui se passe pas à pas dans les calculs de changement de pli. J'essaie surtout de comprendre ce qui se passe pour calculer les coefficients. D'après ce que je peux comprendre, la décomposition QR est utilisée pour obtenir les coefficients, donc je cherche essentiellement une explication ou un moyen de voir étape par étape les équations en cours de calcul, ou ou le code source de qr () dans R pour le retrouver moi-même.
En utilisant les données suivantes:
expression_data <- c(1.27135202935009, 1.41816160331787, 1.2572772420417, 1.70943398046296, 1.30290218641586, 0.632660015122616, 1.73084258791384, 0.863826352944684, 0.62481665344628, 0.356064235030147, 1.31542028558644, 0.30549909383238, 0.464963176430548, 0.132181421105667, -0.284799809563931, 0.216198538884642, -0.0841133304341238, -0.00184472290008803, -0.0924271878885008, -0.340291804468472, -0.236829711453303, 0.0529690806587626, 0.16321956624511, -0.310513510587778, -0.12970035111176, -0.126398635780533, 0.152550803185228, -0.458542514769473, 0.00243517688116406, -0.0190192219685527, 0.199329876859774, 0.0493831375210439, -0.30903829000185, -0.289604319193543, -0.110019942085281, -0.220289950537685, 0.0680403723818882, -0.210977291862137, 0.253649629045288, 0.0740109953273042, 0.115109148186167, 0.187043445057404, 0.705155251555554, 0.105479342752451, 0.344672919872447, 0.303316487542805, 0.332595721664644, 0.0512213943473417, 0.440756755046719, 0.091642538588249, 0.477236022595909, 0.109140019847968, 0.685001267317616, 0.183154080053337, 0.314190891668279, -0.123285017407119, 0.603094973500324, 1.53723917249845, 0.180518835745199, 1.5520102749957, -0.339656677699664, 0.888791974821514, 0.321402618155527, 1.31133008668306, 0.287587853884556, -0.513896569786498, 1.01400498573403, -0.145552182640197, -0.0466811491949621, 1.34418631328095, -0.188666887863983, 0.920227741574566, -0.0182196762358299, 1.18398082848213, 0.0680539755381465, 0.389472802053599, 1.14920099633956, 1.35363045061024, -0.0400907708395635, 1.14405154287124, 0.365672853509181, -0.0742688460368051, 1.60927415300638, -0.0312210890874907, -0.302097025523754, 0.214897201115632, 2.029775196118, 1.46210810601113, -0.126836819148653, -0.0799005522761045, 0.958505775644153, -0.209758749029421, 0.273568395649965, 0.488150388217536, -0.230312627718208, -0.0115780974342431, 0.351708198671371, 0.11803520077305, -0.201488605868396, 0.0814169684941098, 1.32266103732873, 1.9077004570343, 1.34748531668521, 1.37847539147601, 1.85761827653095, 1.11327229058024, 1.21377936983249, 1.167867701785, 1.3119314966728, 1.01502530573911, 1.22109375841952, 1.23026951795161, 1.30638557237133, 1.02569437924906, 0.812852833149196)
treatment <- c('A', 'A', 'A', 'A', 'A', 'A', 'A', 'B', 'B', 'B', 'B', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'B', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'A', 'B', 'A', 'C', 'A', 'C', 'A', 'B', 'C', 'B', 'C', 'C', 'A', 'C', 'A', 'B', 'A', 'C', 'B', 'B', 'A', 'C', 'A', 'C', 'C', 'A', 'C', 'B', 'C', 'A', 'A', 'B', 'C', 'A', 'C', 'B', 'B', 'C', 'C', 'B', 'B', 'C', 'C', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A')
variation <- c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3)
... et le modèle suivant
design <- model.matrix(~0 + factor(treatment,
levels=unique(treatment)) +
factor(variation))
colnames(design) <- c(unique(treatment),
paste0("b",
unique(variation)[-1]))
#expression_data consists of more than the data given. The data given is just one row from the object
fit <- lmFit((expression_data), design)
cont_mat <- makeContrasts(B-A,
levels=design)
fit2 <- contrasts.fit(fit,
contrasts=cont_mat)
fit2 <- eBayes(fit2)
Me donne un changement de pli de -0,8709646.
L'obtention des coefficients peut se faire via:
qr.solve(design, expression_data)
Ensuite, c'est un cas simple de BA pour obtenir le changement de pli.
Maintenant, ce qui me qr.solve
rend perplexe, c'est comment ça fonctionne, ça appelleqr
fonction, mais je n'arrive pas à trouver la source de cela.
Quelqu'un at-il une bonne explication de la décomposition qr, ou un moyen pour moi de retracer exactement ce qui se passe pour dériver les coefficients?
Merci pour toute aide!
la source
Réponses:
L'idée de la décomposition QR en tant que procédure pour obtenir des estimations OLS est déjà expliquée dans le post lié par @MatthewDrury.
Le code source de la fonction
qr
est écrit en Fortran et peut être difficile à suivre. Ici, je montre une implémentation minimale qui reproduit les principaux résultats d'un modèle monté par OLS. Espérons que les étapes soient plus faciles à suivre.Prémultipie parR- 1 Q′Q
Ci-dessous, j'utilise des transformations Householder. Voir les détails par exempleR Oui Q′y
Nous pouvons vérifier que les mêmes estimations que celles
lm
obtenues.Les résidus peuvent être obtenus au fur et à mesure
y - X %*% res$beta
.Les références
DSG Pollock (1999) A handbook of time series analysis, signal processing and dynamic , Academic Press.
la source
QR.regression
comme appel de fonction plutôt queQR.Householder
. A part ça, je ne vous remercierai jamais assez pour une explication aussi perspicace.