Considérez le code R suivant:
> data <- data.frame(
a=c(NA,2,3,4,5,6),b=c(2.2,NA,6.1,8.3,10.2,12.13),c=c(4.2,7.9,NA,16.1,19.9,23))
> data
a b c
1 NA 2.20 4.2
2 2 NA 7.9
3 3 6.10 NA
4 4 8.30 16.1
5 5 10.20 19.9
6 6 12.13 23.0
Comme vous pouvez le voir, j'ai conçu les données de manière approximative c = 2*b = 4*a
. En tant que tel, je m'attendrais à ce que les valeurs manquantes soient autour a=1, b=2, c=12
. J'ai donc effectué l'analyse:
> imp <- mi(data)
Beginning Multiple Imputation ( Sat Oct 18 03:02:41 2014 ):
Iteration 1
Chain 1 : a* b* c*
Chain 2 : a* b* c*
Chain 3 : a* b* c*
Iteration 2
Chain 1 : a* b c
Chain 2 : a* b* c*
Chain 3 : a b* c
Iteration 3
Chain 1 : a b c
Chain 2 : a b c
Chain 3 : a* b* c*
Iteration 4
Chain 1 : a b c
Chain 2 : a b* c
Chain 3 : a* b c
Iteration 5
Chain 1 : a b c*
Chain 2 : a b* c
Chain 3 : a b* c
Iteration 6
Chain 1 : a* b c*
Chain 2 : a b c
Chain 3 : a b c
Iteration 7
Chain 1 : a b c
Chain 2 : a b* c
Chain 3 : a b c*
Iteration 8
Chain 1 : a b c
Chain 2 : a b c
Chain 3 : a b* c*
Iteration 9
Chain 1 : a b c
Chain 2 : a b c*
Chain 3 : a b c
Iteration 10
Chain 1 : a b* c
Chain 2 : a b c
Chain 3 : a b c
Iteration 11
Chain 1 : a b c
Chain 2 : a b c
Chain 3 : a b c
Iteration 12
Chain 1 : a b c
Chain 2 : a* b c
Chain 3 : a b c
Iteration 13
Chain 1 : a b c
Chain 2 : a b c*
Chain 3 : a b c*
Iteration 14
Chain 1 : a b c
Chain 2 : a b c
Chain 3 : a b c
Iteration 15
Chain 1 : a b c
Chain 2 : a b c
Chain 3 : a b c*
Iteration 16
Chain 1 : a b c
Chain 2 : a b c
Chain 3 : a b* c
Iteration 17
Chain 1 : a b c
Chain 2 : a b c
Chain 3 : a b c
Iteration 18
Chain 1 : a b c*
Chain 2 : a b c
Chain 3 : a b c
Iteration 19
Chain 1 : a b c
Chain 2 : a b c
Chain 3 : a b c*
Iteration 20
Chain 1 : a b c*
Chain 2 : a b c
Chain 3 : a b c
Iteration 21
Chain 1 : a b c
Chain 2 : a b c
Chain 3 : a b c
Iteration 22
Chain 1 : a b c*
Chain 2 : a b c
Chain 3 : a b c
Iteration 23
Chain 1 : a b c
Chain 2 : a b c
Chain 3 : a b c
Iteration 24
Chain 1 : a b c*
Chain 2 : a b c
Chain 3 : a b c
Iteration 25
Chain 1 : a b c
Chain 2 : a b c
Chain 3 : a b c
Iteration 26
Chain 1 : a b c
Chain 2 : a b c
Chain 3 : a b c
Iteration 27
Chain 1 : a b c
Chain 2 : a b c
Chain 3 : a b c
Iteration 28
Chain 1 : a b c
Chain 2 : a b c
Chain 3 : a b c
Iteration 29
Chain 1 : a b c
Chain 2 : a b c
Chain 3 : a b c
mi converged ( Sat Oct 18 03:02:45 2014 )
Run 20 more iterations to mitigate the influence of the noise...
Beginning Multiple Imputation ( Sat Oct 18 03:02:45 2014 ):
Iteration 1
Chain 1 : a b c
Chain 2 : a b c
Chain 3 : a b c
Iteration 2
Chain 1 : a b c
Chain 2 : a b c
Chain 3 : a b c
Iteration 3
Chain 1 : a b c
Chain 2 : a b c
Chain 3 : a b c
Iteration 4
Chain 1 : a b c
Chain 2 : a b c
Chain 3 : a b c
Iteration 5
Chain 1 : a b c
Chain 2 : a b c
Chain 3 : a b c
Iteration 6
Chain 1 : a b c
Chain 2 : a b c
Chain 3 : a b c
Iteration 7
Chain 1 : a b c
Chain 2 : a b c
Chain 3 : a b c
Iteration 8
Chain 1 : a b c
Chain 2 : a b c
Chain 3 : a b c
Iteration 9
Chain 1 : a b c
Chain 2 : a b c
Chain 3 : a b c
Iteration 10
Chain 1 : a b c
Chain 2 : a b c
Chain 3 : a b c
Iteration 11
Chain 1 : a b c
Chain 2 : a b c
Chain 3 : a b c
Iteration 12
Chain 1 : a b c
Chain 2 : a b c
Chain 3 : a b c
Iteration 13
Chain 1 : a b c
Chain 2 : a b c
Chain 3 : a b c
Iteration 14
Chain 1 : a b c
Chain 2 : a b c
Chain 3 : a b c
Iteration 15
Chain 1 : a b c
Chain 2 : a b c
Chain 3 : a b c
Iteration 16
Chain 1 : a b c
Chain 2 : a b c
Chain 3 : a b c
Iteration 17
Chain 1 : a b c
Chain 2 : a b c
Chain 3 : a b c
Iteration 18
Chain 1 : a b c
Chain 2 : a b c
Chain 3 : a b c
Iteration 19
Chain 1 : a b c
Chain 2 : a b c
Chain 3 : a b c
Iteration 20
Chain 1 : a b c
Chain 2 : a b c
Chain 3 : a b c
Reached the maximum iteration, mi did not converge ( Sat Oct 18 03:02:48 2014 )
Et enfin observé l'ensemble de données terminé:
> mi.completed(imp)
[[1]]
a b c
1 2 2.20 4.2
2 2 2.20 7.9
3 3 6.10 16.1
4 4 8.30 16.1
5 5 10.20 19.9
6 6 12.13 23.0
[[2]]
a b c
1 2 2.20 4.2
2 2 6.10 7.9
3 3 6.10 7.9
4 4 8.30 16.1
5 5 10.20 19.9
6 6 12.13 23.0
[[3]]
a b c
1 2 2.20 4.2
2 2 2.20 7.9
3 3 6.10 7.9
4 4 8.30 16.1
5 5 10.20 19.9
6 6 12.13 23.0
Comme vous pouvez le voir, les valeurs imputées ne sont pas ce que j'attendais. En fait, ils ressemblent au résultat d' une imputation unique, car les valeurs manquantes ont apparemment été tirées d'enregistrements adjacents.
Qu'est-ce que je rate?
Je dois noter que mes "connaissances" en statistiques se limitent principalement à ce dont je me souviens vaguement d'un cours d'introduction que j'ai suivi il y a environ 14 ans. Je cherche juste un moyen simple d'imputer les valeurs manquantes, il ne doit pas être le plus optimisé mais il doit avoir une sorte de sens (que je ne peux pas faire de ces résultats). C'est peut-être le cas qui mi
n'est pas la bonne approche pour atteindre ce que je veux (peut-être prédire devrait être utilisé à la place), donc je suis ouvert aux suggestions.
J'ai également essayé une approche similaire avec mice
, ce qui a conduit à des résultats similaires.
MISE À JOUR Amelia fonctionne très bien hors de la boîte. Ce serait quand même intéressant de savoir ce qui me manque avec mi / souris.
> mi.completed(imp) [[1]] a b c 1 0.289 2.20 4.2 2 2.000 2.57 7.9 3 3.000 6.10 12.7 4 4.000 8.30 16.1 5 5.000 10.20 19.9 6 6.000 12.13 23.0 [[2]] a b c 1 0.603 2.20 4.2 2 2.000 5.82 7.9 3 3.000 6.10 13.4 4 4.000 8.30 16.1 5 5.000 10.20 19.9 6 6.000 12.13 23.0 [[3]] a b c 1 1.05 2.20 4.2 2 2.00 4.18 7.9 3 3.00 6.10 12.0 4 4.00 8.30 16.1 5 5.00 10.20 19.9 6 6.00 12.13 23.0
Désolé pour le formatage, mais je suppose que c'est le mieux que je puisse faire dans un commentaire.x
/2x
/4x
Réponses:
Étant donné que vous utilisez six cas [enregistrements] et trois variables, la qualité de votre imputation sera assez faible.
Ainsi, en général, l'augmentation du nombre de cas (ou, plus précisément, la diminution de la proportion de valeurs manquantes) augmentera la qualité de l'imputation.
Ainsi, en général, l'augmentation du nombre de variables disponibles dans un ensemble de données augmentera la qualité de l'imputation, tant que ces variables supplémentaires renseignent sur les valeurs manquantes.
Références
Rubin, DB (1996). Imputation multiple après 18 ans et plus. Journal de l'American Statistical Association , 91, 473-489.
Schafer, JL (1999). Imputation multiple: une amorce. Méthodes statistiques en recherche médicale , 8, 3-15.
la source