Existe-t-il un moyen de convertir des colonnes CSV en relations hiérarchiques?

27

J'ai un csv de 7 millions d'enregistrements de biodiversité où les niveaux de taxonomie sont en colonnes. Par exemple:

RecordID,kingdom,phylum,class,order,family,genus,species
1,Animalia,Chordata,Mammalia,Primates,Hominidae,Homo,Homo sapiens
2,Animalia,Chordata,Mammalia,Carnivora,Canidae,Canis,Canis
3,Plantae,nan,Magnoliopsida,Brassicales,Brassicaceae,Arabidopsis,Arabidopsis thaliana
4,Plantae,nan,Magnoliopsida,Fabales,Fabaceae,Phaseoulus,Phaseolus vulgaris

Je veux créer une visualisation en D3, mais le format de données doit être un réseau, où chaque valeur différente de colonne est un enfant de la colonne précédente pour une certaine valeur. Je dois passer du csv à quelque chose comme ça:

{
  name: 'Animalia',
  children: [{
    name: 'Chordata',
    children: [{
      name: 'Mammalia',
      children: [{
        name: 'Primates',
        children: 'Hominidae'
      }, {
        name: 'Carnivora',
        children: 'Canidae'
      }]
    }]
  }]
}

Je ne suis pas venu avec une idée de comment faire cela sans utiliser un millier de boucles. Quelqu'un at-il une suggestion sur la façon de créer ce réseau sur python ou javascript?

Andres Camilo Zuñiga Gonzalez
la source
Pas lié à votre question, mais juste après avoir écrit ma réponse, j'ai remarqué un nanpour le phylum contenant Magnoliopsida. C'est quoi ça nan? Le Phylum est Anthophyta, ou alternativement Magnolia (c'est l'ancien Phylum Angiospermae).
Gerardo Furtado

Réponses:

16

Pour créer l'objet imbriqué exact que vous souhaitez, nous utiliserons un mélange de JavaScript pur et d'une méthode D3 nommée d3.stratify. Cependant, gardez à l'esprit que 7 millions de lignes (veuillez consulter le post scriptum ci-dessous) est beaucoup à calculer.

Il est très important de mentionner que, pour cette solution proposée, vous devrez séparer les royaumes dans différents tableaux de données (par exemple, en utilisant Array.prototype.filter). Cette restriction se produit parce que nous avons besoin d'un nœud racine, et dans la taxonomie linnéenne, il n'y a pas de relation entre les royaumes (à moins que vous ne créiez "Domaine" comme premier rang, qui sera la racine de tous les eucaryotes, mais vous aurez alors la même problème pour les archées et les bactéries).

Supposons donc que vous ayez ce CSV (j'ai ajouté quelques lignes supplémentaires) avec un seul royaume:

RecordID,kingdom,phylum,class,order,family,genus,species
1,Animalia,Chordata,Mammalia,Primates,Hominidae,Homo,Homo sapiens
2,Animalia,Chordata,Mammalia,Carnivora,Canidae,Canis,Canis latrans
3,Animalia,Chordata,Mammalia,Cetacea,Delphinidae,Tursiops,Tursiops truncatus
1,Animalia,Chordata,Mammalia,Primates,Hominidae,Pan,Pan paniscus

Sur la base de ce CSV, nous allons créer ici un tableau nommé tableOfRelationshipsqui, comme son nom l'indique, a les relations entre les rangs:

const data = d3.csvParse(csv);

const taxonomicRanks = data.columns.filter(d => d !== "RecordID");

const tableOfRelationships = [];

data.forEach(row => {
  taxonomicRanks.forEach((d, i) => {
    if (!tableOfRelationships.find(e => e.name === row[d])) tableOfRelationships.push({
      name: row[d],
      parent: row[taxonomicRanks[i - 1]] || null
    })
  })
});

Pour les données ci-dessus, voici tableOfRelationships:

+---------+----------------------+---------------+
| (Index) |         name         |    parent     |
+---------+----------------------+---------------+
|       0 | "Animalia"           | null          |
|       1 | "Chordata"           | "Animalia"    |
|       2 | "Mammalia"           | "Chordata"    |
|       3 | "Primates"           | "Mammalia"    |
|       4 | "Hominidae"          | "Primates"    |
|       5 | "Homo"               | "Hominidae"   |
|       6 | "Homo sapiens"       | "Homo"        |
|       7 | "Carnivora"          | "Mammalia"    |
|       8 | "Canidae"            | "Carnivora"   |
|       9 | "Canis"              | "Canidae"     |
|      10 | "Canis latrans"      | "Canis"       |
|      11 | "Cetacea"            | "Mammalia"    |
|      12 | "Delphinidae"        | "Cetacea"     |
|      13 | "Tursiops"           | "Delphinidae" |
|      14 | "Tursiops truncatus" | "Tursiops"    |
|      15 | "Pan"                | "Hominidae"   |
|      16 | "Pan paniscus"       | "Pan"         |
+---------+----------------------+---------------+

Jetez un œil en nulltant que parent de Animalia: c'est pourquoi je vous ai dit que vous devez séparer votre ensemble de données par Kingdoms, il ne peut y en avoir qu'unnull valeur dans l'ensemble du tableau.

Enfin, sur la base de ce tableau, nous créons la hiérarchie en utilisant d3.stratify():

const stratify = d3.stratify()
    .id(function(d) { return d.name; })
    .parentId(function(d) { return d.parent; });

const hierarchicalData = stratify(tableOfRelationships);

Et voici la démo. Ouvrez la console de votre navigateur (celle de l'extrait n'est pas très bonne pour cette tâche) et inspectez les différents niveaux ( children) de l'objet:


PS : Je ne sais pas quel type de dataviz vous allez créer, mais vous devriez vraiment éviter les rangs taxonomiques. Toute la taxonomie linnéenne est dépassée, nous n'utilisons plus de rangs: puisque la systématique phylogénétique a été développée au milieu des années 60, nous n'utilisons que des taxons, sans aucun rang taxonomique (professeur de biologie évolutive ici). De plus, je suis assez curieux de ces 7 millions de lignes, car nous avons décrit un peu plus d'un million d'espèces!

Gerardo Furtado
la source
3
. @ gerardo Merci pour votre réponse, je vais voir si cela fonctionne dans un échantillon des 7 millions de lignes. La base de données contient des lignes répétées pour de nombreuses espèces. donc l'idée est de montrer combien il y a d'enregistrements pour un certain rang taxonomique. L'idée est de créer quelque chose de similaire à Zoomic Icicle Tree de Mike Bostock .
Andres Camilo Zuñiga Gonzalez
9

Il est facile de faire exactement ce dont vous avez besoin en utilisant python et python-benedictbibliothèque (il est open source sur Github :

Installation pip install python-benedict

from benedict import benedict as bdict

# data source can be a filepath or an url
data_source = """
RecordID,kingdom,phylum,class,order,family,genus,species
1,Animalia,Chordata,Mammalia,Primates,Hominidae,Homo,Homo sapiens
2,Animalia,Chordata,Mammalia,Carnivora,Canidae,Canis,Canis
3,Plantae,nan,Magnoliopsida,Brassicales,Brassicaceae,Arabidopsis,Arabidopsis thaliana
4,Plantae,nan,Magnoliopsida,Fabales,Fabaceae,Phaseoulus,Phaseolus vulgaris
"""
data_input = bdict.from_csv(data_source)
data_output = bdict()

ancestors_hierarchy = ['kingdom', 'phylum', 'class', 'order', 'family', 'genus', 'species']
for value in data_input['values']:
    data_output['.'.join([value[ancestor] for ancestor in ancestors_hierarchy])] = bdict()

print(data_output.dump())
# if this output is ok for your needs, you don't need the following code

keypaths = sorted(data_output.keypaths(), key=lambda item: len(item.split('.')), reverse=True)

data_output['children'] = []
def transform_data(d, key, value):
    if isinstance(value, dict):
        value.update({ 'name':key, 'children':[] })
data_output.traverse(transform_data)

for keypath in keypaths:
    target_keypath = '.'.join(keypath.split('.')[:-1] + ['children'])
    data_output[target_keypath].append(data_output.pop(keypath))

print(data_output.dump())

La première sortie d'impression sera:

{
    "Animalia": {
        "Chordata": {
            "Mammalia": {
                "Carnivora": {
                    "Canidae": {
                        "Canis": {
                            "Canis": {}
                        }
                    }
                },
                "Primates": {
                    "Hominidae": {
                        "Homo": {
                            "Homo sapiens": {}
                        }
                    }
                }
            }
        }
    },
    "Plantae": {
        "nan": {
            "Magnoliopsida": {
                "Brassicales": {
                    "Brassicaceae": {
                        "Arabidopsis": {
                            "Arabidopsis thaliana": {}
                        }
                    }
                },
                "Fabales": {
                    "Fabaceae": {
                        "Phaseoulus": {
                            "Phaseolus vulgaris": {}
                        }
                    }
                }
            }
        }
    }
}

La deuxième sortie imprimée sera:

{
    "children": [
        {
            "name": "Animalia",
            "children": [
                {
                    "name": "Chordata",
                    "children": [
                        {
                            "name": "Mammalia",
                            "children": [
                                {
                                    "name": "Carnivora",
                                    "children": [
                                        {
                                            "name": "Canidae",
                                            "children": [
                                                {
                                                    "name": "Canis",
                                                    "children": [
                                                        {
                                                            "name": "Canis",
                                                            "children": []
                                                        }
                                                    ]
                                                }
                                            ]
                                        }
                                    ]
                                },
                                {
                                    "name": "Primates",
                                    "children": [
                                        {
                                            "name": "Hominidae",
                                            "children": [
                                                {
                                                    "name": "Homo",
                                                    "children": [
                                                        {
                                                            "name": "Homo sapiens",
                                                            "children": []
                                                        }
                                                    ]
                                                }
                                            ]
                                        }
                                    ]
                                }
                            ]
                        }
                    ]
                }
            ]
        },
        {
            "name": "Plantae",
            "children": [
                {
                    "name": "nan",
                    "children": [
                        {
                            "name": "Magnoliopsida",
                            "children": [
                                {
                                    "name": "Brassicales",
                                    "children": [
                                        {
                                            "name": "Brassicaceae",
                                            "children": [
                                                {
                                                    "name": "Arabidopsis",
                                                    "children": [
                                                        {
                                                            "name": "Arabidopsis thaliana",
                                                            "children": []
                                                        }
                                                    ]
                                                }
                                            ]
                                        }
                                    ]
                                },
                                {
                                    "name": "Fabales",
                                    "children": [
                                        {
                                            "name": "Fabaceae",
                                            "children": [
                                                {
                                                    "name": "Phaseoulus",
                                                    "children": [
                                                        {
                                                            "name": "Phaseolus vulgaris",
                                                            "children": []
                                                        }
                                                    ]
                                                }
                                            ]
                                        }
                                    ]
                                }
                            ]
                        }
                    ]
                }
            ]
        }
    ]
}
Fabio Caccamo
la source
5

var log = console.log;
var data = `
1,Animalia,Chordata,Mammalia,Primates,Hominidae,Homo,Homo sapiens
2,Animalia,Chordata,Mammalia,Carnivora,Canidae,Canis,Canis
3,Plantae,nan,Magnoliopsida,Brassicales,Brassicaceae,Arabidopsis,Arabidopsis thaliana
4,Plantae,nan,Magnoliopsida,Fabales,Fabaceae,Phaseoulus,Phaseolus vulgaris`;
//make array of rows with array of values
data = data.split("\n").map(v=>v.split(","));
//init tree
var tree = {};
data.forEach(row=>{
    //set current = root of tree for every row
    var cur = tree; 
    var id = false;
    row.forEach((value,i)=>{
        if (i == 0) {
            //set id and skip value
            id = value;
            return;
        }
        //If branch not exists create. 
        //If last value - write id
        if (!cur[value]) cur[value] = (i == row.length - 1) ? id : {};
        //Move link down on hierarhy
        cur = cur[value];
    });
}); 
log("Tree:");
log(JSON.stringify(tree, null, "  "));

//Now you have hierarhy in tree and can do anything with it.
var toStruct = function(obj) {
    let ret = [];
    for (let key in obj) {
        let child = obj[key];
        let rec = {};
        rec.name = key;
        if (typeof child == "object") rec.children = toStruct(child);
        ret.push(rec);
    }
    return ret;
}
var struct = toStruct(tree);
console.log("Struct:");
console.log(struct);

Maître de béquille
la source
5

Cela semble simple, alors je ne comprends peut-être pas votre problème.

La structure de données que vous souhaitez est un ensemble imbriqué de dictionnaires, de paires clé / valeur. Votre dictionnaire de royaume de niveau supérieur a une clé pour chacun de vos royaumes, dont les valeurs sont des dictionnaires de phylum. Un dictionnaire de phylum (pour un royaume) a une clé pour chaque nom de phylum et chaque clé a une valeur qui est un dictionnaire de classe, etc.

Pour simplifier le codage, vos dictionnaires de genre auront une clé pour chaque espèce, mais les valeurs pour les espèces seront des dictionnaires vides.

Cela devrait être ce que vous voulez; aucune bibliothèque étrange requise.

import csv

def read_data(filename):
    tree = {}
    with open(filename) as f:
        f.readline()  # skip the column headers line of the file
        for animal_cols in csv.reader(f):
            spot = tree
            for name in animal_cols[1:]:  # each name, skipping the record number
                if name in spot:  # The parent is already in the tree
                    spot = spot[name]  
                else:
                    spot[name] = {}  # creates a new entry in the tree
                    spot = spot[name]
    return tree

Pour le tester, j'ai utilisé vos données et pprintde la bibliothèque standard.

from pprint import pprint
pprint(read_data('data.txt'))

avoir

{'Animalia': {'Chordata': {'Mammalia': {'Carnivora': {'Canidae': {'Canis': {'Canis': {}}}},
                                        'Primates': {'Hominidae': {'Homo': {'Homo sapiens': {}}}}}}},
 'Plantae': {'nan': {'Magnoliopsida': {'Brassicales': {'Brassicaceae': {'Arabidopsis': {'Arabidopsis thaliana': {}}}},
                                       'Fabales': {'Fabaceae': {'Phaseoulus': {'Phaseolus vulgaris': {}}}}}}}}

En relisant votre question, vous voudrez peut-être un grand tableau de paires («lien d'un groupe plus général», «lien vers un groupe plus spécifique»). Autrement dit, «Animalia» renvoie à «Animalia: Chordata» et «Animalia: Chordata» à «Animalia: Chordata: Mammalia», etc. Malheureusement, le «nan» dans vos données signifie que vous avez besoin de noms complets à chaque lien. Si ( parents, enfants) sont ce que vous voulez, parcourez l’arbre de cette façon:

def walk_children(tree, parent=''):
    for child in tree.keys():
        full_name = parent + ':' + child
        yield (parent, full_name)
        yield from walk_children(tree[child], full_name)

tree = read_data('data.txt')
for (parent, child) in walk_children(tree):
    print(f'parent="{parent}" child="{child}"')

donnant:

parent="" child=":Animalia"
parent=":Animalia" child=":Animalia:Chordata"
parent=":Animalia:Chordata" child=":Animalia:Chordata:Mammalia"
parent=":Animalia:Chordata:Mammalia" child=":Animalia:Chordata:Mammalia:Primates"
parent=":Animalia:Chordata:Mammalia:Primates" child=":Animalia:Chordata:Mammalia:Primates:Hominidae"
parent=":Animalia:Chordata:Mammalia:Primates:Hominidae" child=":Animalia:Chordata:Mammalia:Primates:Hominidae:Homo"
parent=":Animalia:Chordata:Mammalia:Primates:Hominidae:Homo" child=":Animalia:Chordata:Mammalia:Primates:Hominidae:Homo:Homo sapiens"
parent=":Animalia:Chordata:Mammalia" child=":Animalia:Chordata:Mammalia:Carnivora"
parent=":Animalia:Chordata:Mammalia:Carnivora" child=":Animalia:Chordata:Mammalia:Carnivora:Canidae"
parent=":Animalia:Chordata:Mammalia:Carnivora:Canidae" child=":Animalia:Chordata:Mammalia:Carnivora:Canidae:Canis"
parent=":Animalia:Chordata:Mammalia:Carnivora:Canidae:Canis" child=":Animalia:Chordata:Mammalia:Carnivora:Canidae:Canis:Canis"
parent="" child=":Plantae"
parent=":Plantae" child=":Plantae:nan"
parent=":Plantae:nan" child=":Plantae:nan:Magnoliopsida"
parent=":Plantae:nan:Magnoliopsida" child=":Plantae:nan:Magnoliopsida:Brassicales"
parent=":Plantae:nan:Magnoliopsida:Brassicales" child=":Plantae:nan:Magnoliopsida:Brassicales:Brassicaceae"
parent=":Plantae:nan:Magnoliopsida:Brassicales:Brassicaceae" child=":Plantae:nan:Magnoliopsida:Brassicales:Brassicaceae:Arabidopsis"
parent=":Plantae:nan:Magnoliopsida:Brassicales:Brassicaceae:Arabidopsis" child=":Plantae:nan:Magnoliopsida:Brassicales:Brassicaceae:Arabidopsis:Arabidopsis thaliana"
parent=":Plantae:nan:Magnoliopsida" child=":Plantae:nan:Magnoliopsida:Fabales"
parent=":Plantae:nan:Magnoliopsida:Fabales" child=":Plantae:nan:Magnoliopsida:Fabales:Fabaceae"
parent=":Plantae:nan:Magnoliopsida:Fabales:Fabaceae" child=":Plantae:nan:Magnoliopsida:Fabales:Fabaceae:Phaseoulus"
parent=":Plantae:nan:Magnoliopsida:Fabales:Fabaceae:Phaseoulus" child=":Plantae:nan:Magnoliopsida:Fabales:Fabaceae:Phaseoulus:Phaseolus vulgaris"
Charles Merriam
la source
Cela ne renvoie pas un dict imbriqué avec nameet childrencomme demandé dans la question.
Fabio Caccamo
Non, ce n'est pas le cas. Ce qui était demandé était "quelque chose comme ça"; Je prends cela comme une tentative de trouver la structure de données de l'idée. On pourrait simplement construire une structure personnalisée en marchant dans l'arbre, un exercice en quatre lignes.
Charles Merriam
3

En Python, une façon de coder un arbre est d'utiliser a dict, où les clés représentent les nœuds et la valeur associée est le parent du nœud:

{'Homo sapiens': 'Homo',
 'Canis': 'Canidae',
 'Arabidopsis thaliana': 'Arabidopsis',
 'Phaseolus vulgaris': 'Phaseoulus',
 'Homo': 'Hominidae',
 'Arabidopsis': 'Brassicaceae',
 'Phaseoulus': 'Fabaceae',
 'Hominidae': 'Primates',
 'Canidae': 'Carnivora',
 'Brassicaceae': 'Brassicales',
 'Fabaceae': 'Fabales',
 'Primates': 'Mammalia',
 'Carnivora': 'Mammalia',
 'Brassicales': 'Magnoliopsida',
 'Fabales': 'Magnoliopsida',
 'Mammalia': 'Chordata',
 'Magnoliopsida': 'nan',
 'Chordata': 'Animalia',
 'nan': 'Plantae',
 'Animalia': None,
 'Plantae': None}

Un avantage de ceci est que vous vous assurez que les nœuds sont uniques, car dictsils ne peuvent pas avoir de clés en double.

Si vous voulez encoder un graphique dirigé plus général à la place (c'est-à-dire que les nœuds peuvent avoir plus d'un parent), vous pouvez utiliser des listes de valeurs et avoir les enfants représentés (ou les parents, je suppose):

{'Homo': ['Homo sapiens', 'ManBearPig'],
'Ursus': ['Ursus arctos', 'ManBearPig'],
'Sus': ['ManBearPig']}

Vous pouvez faire quelque chose de similaire avec les objets dans JS, en substituant les tableaux aux listes, si nécessaire.

Voici le code Python que j'ai utilisé pour créer le premier dict ci-dessus:

import csv

ROWS = []
# Load file: tbl.csv
with open('tbl.csv', 'r') as in_file:
    csvreader = csv.reader(in_file)

    # Ignore leading row numbers
    ROWS = [row[1:] for row in csvreader]
    # Drop header row
    del ROWS[0]

# Build dict
mytree = {row[i]: row[i-1] for row in ROWS for i in range(len(row)-1, 0, -1)}
# Add top-level nodes
mytree = {**mytree, **{row[0]: None for row in ROWS}}
dizzy77
la source
2

La façon la plus simple de transformer vos données en hiérarchie est probablement d'utiliser l' opérateur d' imbrication intégré de D3 d3.nest():

L'imbrication permet de regrouper les éléments d'un tableau dans une arborescence hiérarchique;

En enregistrant les fonctions clés via, nest.key()vous pouvez facilement spécifier la structure de votre hiérarchie. Tout comme Gerardo l'a expliqué dans sa réponse, vous pouvez utiliser la .columnspropriété exposée sur le tableau de données après avoir analysé votre CSV pour automatiser la génération de ces fonctions clés. Le code entier se résume aux lignes suivantes:

const nester = d3.nest();                             // Create a nest operator
const [, ...taxonomicRanks] = data.columns;           // Get rid of the RecordID property
taxonomicRanks.forEach(r => nester.key(d => d[r]));   // Register key functions
const nest = nester.entries(data);                    // Calculate hierarchy

Notez, cependant, que la hiérarchie résultante ne ressemble pas exactement à la structure demandée dans votre question car les objets sont { key, values }au lieu de { name, children }; à propos, cela vaut également pour la réponse de Gerardo. Cela ne fait pas de mal pour les deux réponses, cependant, car les résultats peuvent être congestionnés d3.hierarchy()en spécifiant une fonction d' accesseur pour les enfants :

d3.hierarchy(nest, d => d.values)   // Second argument is the children accessor

La démo suivante rassemble toutes les pièces:

Vous pouvez également consulter la conversion des valeurs et des clés d3.nest () en nom et enfants au cas où vous ressenteriez le besoin d'avoir exactement votre structure publiée.

altocumulus
la source
Profitez-en d3.nesttant qu'il dure: il sera bientôt obsolète.
Gerardo Furtado
@GerardoFurtado Ce fut ma première pensée. Cependant, je n'ai trouvé aucune référence soutenant cette hypothèse. Je pensais avoir lu son retrait et j'étais même surpris de le trouver encore contenu dans le bundle. La collection d3 est archivée, mais il n'y a aucune note de dépréciation dessus. Avez-vous des informations fiables à ce sujet?
altocumulus
C'est pour la v6, regardez ici . Regardez "d3-collection [Supprimé!]" .
Gerardo Furtado
@GerardoFurtado Non, ce n'était pas la référence que j'avais en tête. Cela répond malheureusement à ma question.
altocumulus
1

Un défi amusant. Essayez ce code javascript. J'utilise l'ensemble de Lodash pour plus de simplicité.

import { set } from 'lodash'

const csvString = `RecordID,kingdom,phylum,class,order,family,genus,species
    1,Animalia,Chordata,Mammalia,Primates,Hominidae,Homo,Homo sapiens
    2,Animalia,Chordata,Mammalia,Carnivora,Canidae,Canis,Canis
    3,Plantae,nan,Magnoliopsida,Brassicales,Brassicaceae,Arabidopsis,Arabidopsis thaliana
    4,Plantae,nan,Magnoliopsida,Fabales,Fabaceae,Phaseoulus,Phaseolus vulgaris`

// First create a quick lookup map
const result = csvString
  .split('\n') // Split for Rows
  .slice(1) // Remove headers
  .reduce((acc, row) => {
    const path = row
      .split(',') // Split for columns
      .filter(item => item !== 'nan') // OPTIONAL: Filter 'nan'
      .slice(1) // Remove record id
    const species = path.pop() // Pull out species (last entry)
    set(acc, path, species)
    return acc
  }, {})

console.log(JSON.stringify(result, null, 2))

// Then convert to the name-children structure by recursively calling this function
const convert = (obj) => {
  // If we're at the end of our chain, end the chain (children is empty)
  if (typeof obj === 'string') {
    return [{
      name: obj,
      children: [],
    }]
  }
  // Else loop through each entry and add them as children
  return Object.entries(obj)
    .reduce((acc, [key, value]) => acc.concat({
      name: key,
      children: convert(value), // Recursive call
    }), [])
}

const result2 = convert(result)

console.log(JSON.stringify(result2, null, 2))

Cela produit le résultat final (similaire) à ce que vous voulez.

[
  {
    "name": "Animalia",
    "children": [
      {
        "name": "Chordata",
        "children": [
          {
            "name": "Mammalia",
            "children": [
              {
                "name": "Primates",
                "children": [
                  {
                    "name": "Hominidae",
                    "children": [
                      {
                        "name": "Homo",
                        "children": [
                          {
                            "name": "Homo sapiens",
                            "children": []
                          }
                        ]
                      }
                    ]
                  }
                ]
              },
              {
                "name": "Carnivora",
                "children": [
                  {
                    "name": "Canidae",
                    "children": [
                      {
                        "name": "Canis",
                        "children": [
                          {
                            "name": "Canis",
                            "children": []
                          }
                        ]
                      }
                    ]
                  }
                ]
              }
            ]
          }
        ]
      }
    ]
  },
  {
    "name": "Plantae",
    "children": [
      {
        "name": "Magnoliopsida",
        "children": [
          {
            "name": "Brassicales",
            "children": [
              {
                "name": "Brassicaceae",
                "children": [
                  {
                    "name": "Arabidopsis",
                    "children": [
                      {
                        "name": "Arabidopsis thaliana",
                        "children": []
                      }
                    ]
                  }
                ]
              }
            ]
          },
          {
            "name": "Fabales",
            "children": [
              {
                "name": "Fabaceae",
                "children": [
                  {
                    "name": "Phaseoulus",
                    "children": [
                      {
                        "name": "Phaseolus vulgaris",
                        "children": []
                      }
                    ]
                  }
                ]
              }
            ]
          }
        ]
      }
    ]
  }
]
ZephDavies
la source
1

En fait, @Charles Merriam sa solution est très élégante.

Si vous souhaitez obtenir un résultat identique à la question, essayez comme suit.

from io import StringIO
import csv


CSV_CONTENTS = """RecordID,kingdom,phylum,class,order,family,genus,species
1,Animalia,Chordata,Mammalia,Primates,Hominidae,Homo,Homo sapiens
2,Animalia,Chordata,Mammalia,Carnivora,Canidae,Canis,Canis
3,Plantae,nan,Magnoliopsida,Brassicales,Brassicaceae,Arabidopsis,Arabidopsis thaliana
4,Plantae,nan,Magnoliopsida,Fabales,Fabaceae,Phaseoulus,Phaseolus vulgaris
"""


def recursive(dict_data):
    lst = []
    for key, val in dict_data.items():
        children = recursive(val)
        lst.append(dict(name=key, children=children))
    return lst


def main():
    with StringIO() as io_f:
        io_f.write(CSV_CONTENTS)
        io_f.seek(0)
        io_f.readline()  # skip the column headers line of the file
        result_tree = {}
        for row_data in csv.reader(io_f):
            cur_dict = result_tree  # cursor, back to root
            for item in row_data[1:]:  # each item, skip the record number
                if item not in cur_dict:
                    cur_dict[item] = {}  # create new dict
                    cur_dict = cur_dict[item]
                else:
                    cur_dict = cur_dict[item]

    # change answer format
    result_list = []
    for cur_kingdom_name in result_tree:
        result_list.append(dict(name=cur_kingdom_name, children=recursive(result_tree[cur_kingdom_name])))

    # Optional
    import json
    from os import startfile
    output_file = 'result.json'
    with open(output_file, 'w') as f:
        json.dump(result_list, f)
    startfile(output_file)


if __name__ == '__main__':
    main()

entrez la description de l'image ici

Carson Arucard
la source