Do Natural preuves , relativisation et algébrisation affectent également la séparation des autres classes de complexité comme etc?
Par exemple barrière des preuves naturelles doit affecter toute preuve de puisqu'elle séparera P ≠ N P . Cependant relation entre N P et C o N P ne semble pas avoir beaucoup avec owfs par rapport à la relation entre P et N P . Les preuves naturelles affectent-elles donc la séparation plus forte de N P ≠ C o N P ?
Réponses:
Il y a (au moins) deux domaines où les obstacles existants ont peu à dire:
Limites inférieures de l'ACC Il n'y a pas d'obstacle connu pour prouver que TC0 n'est pas dans l'ACC (non uniforme) - autre que la possibilité que la séparation soit fausse. Il n'est pas clair si la barrière Natural Proofs devrait s'appliquer à l'ACC. La question se résume à: devons-nous nous attendre à ce qu'il y ait des fonctions pseudo-aléatoires implémentables dans ACC?
LOGSPACE vs NP Comme l'a souligné Fortnow , les mécanismes oracle existants pour le calcul limité dans l'espace ne semblent pas présenter un véritable obstacle à LOGSPACE vs NP. À ma connaissance, les modèles d'oracle connus qui produisent un effondrement de LOGSPACE et NP s'effondrent également ALTERNATING LOGSPACE (c.-à-d. P) et ALTERNATING POLYTIME (c.-à-d. PSPACE). à PSPACE).
la source
Le résultat de Razborov et Rudich dans leur papier de preuves naturelles est assez général. Il ne se limite pas à par rapport à N P .P N P
Personnellement , j'aime la clarté de l'explication contenue dans le livre récent de Stasys Jukna " Complexité de la fonction booléenne: avancées et frontières ":
La question est: 1. Croyons-nous s'il existe de telles fonctions difficiles? 2. Dans quelle mesure pouvons-nous nous attendre à ce que les propriétés des preuves de séparation actuellement possibles soient constructives / importantes?
Dans l'autre sens, Razbarov a mentionné à divers endroits qu'il considère personnellement le résultat comme un guide à éviter et non comme un obstacle essentiel à la démonstration des limites inférieures.
Outre les articles de Ryan Williams au cours des dernières années, il a mentionné deux articles:
La relativisation et l'algèbre sont un peu plus délicates et dépendent de la façon dont nous définissons la relazivisation pour ces classes. Mais en règle générale, la diagonalisation simple (une diagonalisation qui utilise le même contre-exemple pour toutes les machines calculant la même fonction, c'est-à-dire que le contre-exemple ne dépend que des machines dans le plus petit calcul et ne dépend pas de leur code et de la façon dont elles calculent ) ne peut pas séparer ces classes.
Il est possible d'extraire des fonctions de diagonalisation non simples des résultats de diagonalisation indirecte comme les bornes inférieures de l'espace-temps pour SAT.
la source