Simuler un cube de Rubik

39

Un cube de Rubik a 6 couleurs: rouge, orange, jaune, blanc, bleu et vert. Les faces rouge et orange, jaune et blanche, bleue et verte sont opposées.

Le net d'un cube de Rubik résolu ressemble à ceci:

 Y
BRGO
 W

Et les carreaux ressemblent à ceci:

      Y Y Y
      Y Y Y
      Y Y Y
B B B R R R G G G O O O
B B B R R R G G G O O O
B B B R R R G G G O O O
      W W W
      W W W
      W W W

Défi

Avec des rotations, des rotations inversées ou des rotations doubles, le cube résolu sera transformé en art ASCII ou en image (les espaces blancs ne sont pas nécessaires, peuvent exister ou non, les espaces finaux sont autorisés.).

L'entrée sera rotation (et modificateur facultatif). La notation de rotation va comme: U(p), L(eft), F(ront), R(ight), B(ack), D(propre); 2(double) 'ou i(inverse).

Toutes les rotations normales seront à 90 ° dans le sens des aiguilles d'une montre, les inverses seront dans le sens contraire des aiguilles d'une montre.

Explication à propos de clockwiseness : Imaginez le cube en regardant le visage rouge et le visage jaune en haut. Ensuite, faites pivoter le cube afin que le visage que le programme fera pivoter soit face à vous. C'est ainsi que fonctionnera l'horloge. (Sauf face arrière, vous ferez pivoter le cube horizontalement dans ce cas.)

Contribution

L'entrée sera une liste de mouvements.

Sortie

Un art ASCII qui représente le cube ou une image du réseau du cube.

Exemples

Entrée : (vide)

Sortie :

      Y Y Y
      Y Y Y
      Y Y Y
B B B R R R G G G O O O
B B B R R R G G G O O O
B B B R R R G G G O O O
      W W W
      W W W
      W W W

Entrée : U(en haut)

Sortie :

      Y Y Y
      Y Y Y
      Y Y Y
R R R G G G O O O B B B
B B B R R R G G G O O O
B B B R R R G G G O O O
      W W W
      W W W
      W W W

Entrée : U'ou Ui(inverse vers le haut)

Sortie :

      Y Y Y
      Y Y Y
      Y Y Y
O O O B B B R R R G G G
B B B R R R G G G O O O
B B B R R R G G G O O O
      W W W
      W W W
      W W W

Entrée : U2(double up)

Sortie :

      Y Y Y
      Y Y Y
      Y Y Y
G G G O O O B B B R R R
B B B R R R G G G O O O
B B B R R R G G G O O O
      W W W
      W W W
      W W W

Entrée : L'(inversé à gauche)

Sortie :

      R Y Y
      R Y Y
      R Y Y
B B B W R R G G G O O Y
B B B W R R G G G O O Y
B B B W R R G G G O O Y
      O W W
      O W W
      O W W

Entrée : R(droite)

Sortie :

      Y Y R
      Y Y R
      Y Y R
B B B R R W G G G Y O O
B B B R R W G G G Y O O
B B B R R W G G G Y O O
      W W O
      W W O
      W W O

Entrée : U2 L' D(double en haut, inverse gauche, en bas)

Sortie :

      O Y Y
      R Y Y
      R Y Y
G B B W O O B B B R R Y
G B B W R R G G G O O Y
O O Y G B B W R R G G G
      R O O
      W W W
      W W W

Règles

  • Aucune échappatoire autorisée.
  • C'est du , donc le code le plus court d'octets résolvant le problème gagne.
Betseg
la source
2
Relié , lié , lié .
mardi
Pouvons-nous choisir de choisir de réorienter le cube (par exemple, avec White U, Orange F et Green R)?
Primo
Oui, bien sûr, tant qu'ils sont distincts et reconnaissables.
mardi
Avons-nous besoin de soutenir S, E, M, x, y, z, u/ Uw, d/ Dw, r/ Rw, l/ Lw, f/ Fw, b/ Bwse déplace aussi bien? Ou seulement la valeur par défaut: U, D, R, L, F, Bet leur variante anti - horaire avec apostrophe ( ')? Hors sujet: Je me pose toujours des questions sur les questions de Rubik's Cube. Êtes-vous également un collectionneur de Twisty Puzzles?
Kevin Cruijssen
3
@KevinCruijssen Dang, c'est beaucoup de puzzles.
mbomb007

Réponses:

14

Ruby, 370 339 305 octets

Dernière édition: quelques octets enregistrés en réorganisant les formules de traçage et en supprimant les crochets inutiles. Une économie énorme en réécrivant la génération du cube - je n'avais jamais su que Ruby avait une fonction intégrée pour les produits cartésiens!

->s{q=[-66,0,71].product [-87,0,89],[-79,0,82]
s.map{|c|m="LDBRUF".index c[0];e=m/3*2-1
c.sub(/[i']/,"33").chars{q.map{|j|j[m%=3]*e>0&&(j[m-2],j[m-1]=j[m-1]*e,-j[m-2]*e)}}}
t=[" "*12]*9*$/
q.map{|r|a,b,c=r.map{|i|i<=>0}
3.times{|i|r[i]!=0&&t[56+[a*3-a*c-d=b*13,a-d*3+d*c,3-d-c*3+c*a][i]]=r[i].abs.chr}}
t}

Fonction anonyme.

Accepte un tableau de chaînes, chacune représentant un tour de visage (une seule chaîne avec des espaces entre chaque tour de visage correspond à 6 octets supplémentaires.)

Retourne une chaîne rectangulaire de 9x12.

Brève explication

Ceci est étroitement basé sur un concept de ma réponse à cette question , qui à son tour était basée sur un concept similaire de Jan Dvorak.

La première ligne génère un tableau de 27 éléments représentant les 27 cubes. Chaque compartiment est représenté par un vecteur tridimensionnel dans lequel le signe représente sa position actuelle et la magnitude de chaque coordonnée représente le code ASCII pour la couleur de l'autocollant.

Exemple de déplacement: pour R, pour chaque groupe, vérifiez si la coordonnée x est> 0 et si c'est le cas tournez à 90 degrés en permutant les coordonnées y et z et en échangeant le signe de l'un d'eux.

Prenez un tableau d'espaces 9x12 et tracez-y le cube. Pour chaque groupe et chaque axe, nous vérifions si l'autocollant existe (coordonnée dans cet axe différent de zéro) et déterminons où il va aller. Ensuite, nous prenons la coordonnée et effectuons .abs.chrpour changer le nombre dans le caractère requis et le traçons.

Non testé dans le programme de test (par modification de 339 octets)

f=->s{

  q=(0..26).map{|i|                         #Build an array of 27 cubies
    [[-66,0,71][i%3],                       #x coordinate B.G
     [-87,0,89][i/3%3],                     #y coordinate Y.W
     [-79,0,82][i/9]]                       #z coordinate O.R
  }

  s.map{|c|                                 #For each move in the input array
    m="LDBRUF".index(c[0]);e=m/3*2-1        #m=face to move. e=-1 for LDB, +1 for RUF.
    c.sub(/[i']/,"33").chars{               #Substitute "i" and "'" for "33" so chars in string = clockwise 1/4 turns required. For each char...
      q.map{|j|j[m%=3]*e>0&&                #...and each cubie, m%3 tells the relevant axis. if coordinate*e>1 rotate the cubie 1/4 turn.
        (j[m-2],j[m-1]=j[m-1]*e,-j[m-2]*e)} #Swap other two axes and change sign of one. e performs sign change if necessary for LDB.
    }
  }

  t=[" "*12]*9*$/                           #Make an array of 9 strings of 12 spaces, then make a single string by joining them with newlines
  q.map{|r|                                 #For each cubie
    a,b,c=r.map{|i|i<=>0}                   #make a normalised (-1,0,1) copy of each coordinate.
    d=b*13                                  #13 chars per line, d will be useful for plotting to the correct line of the output.
    3.times{|i|                             #For each of the 3 coordinates of the cubie
      r[i]!=0&&                             #if zero, sticker doesn't exist (edges and centres have <3 stickers.) If not zero plot the sticker. 
      t[[56-d+a*3-a*c,                      #Calculate position on plot for x (L/R faces),
         56-d*3+d*c+a,                      #Calculate position on plot for y (D/U faces),
         59-d-c*3+c*a][i]]=                 #Calculate position on plot for z (B/F faces). Select the correct axis. 
      r[i].abs.chr                          #Convert the coordinate to a character and assign to the correct space on the output plot.
    }
  }
t}                                          #Return the output string.

puts f[gets.chomp.split]

Sortie

Checkerboard
U2 D2 F2 B2 L2 R2
   YWY
   WYW
   YWY
BGBRORGBGORO
GBGOROBGBROR
BGBRORGBGORO
   WYW
   YWY
   WYW

6-spot
U D' R L' F B' U D'
   RRR
   RYR
   RRR
WWWGGGYYYBBB
WBWGRGYGYBOB
WWWGGGYYYBBB
   OOO
   OWO
   OOO

Testcase
U2 L' D
   OYY
   RYY
   RYY
GBBWOOBBBRRY
GBBWRRGGGOOY
OOYGBBWRRGGG
   ROO
   WWW
   WWW
Level River St
la source
11

Javascript (ES5), 1615 octets

function m(a){b=[];b[0]=a[6];b[2]=a[0];b[8]=a[2];b[6]=a[8];b[1]=a[3];b[5]=a[1];b[7]=a[5];b[3]=a[7];b[4]=a[4];return b}function q(a,b){c=[];c[0]=b[0];c[1]=b[1];c[2]=a[2];c[3]=b[3];c[4]=b[4];c[5]=a[5];c[6]=b[6];c[7]=b[7];c[8]=a[8];return c}function r(a){var b=[];b[0]=m(a[0]);b[1]=q(a[2],a[1]);b[4]=q(a[1],a[4]);b[3]=q(a[4],a[3]);b[2]=q(a[3],a[2]);b[5]=a[5];return b}function x(a){var b=[];b[0]=m(a[0]);b[1]=a[2];b[2]=a[3];b[3]=a[4];b[4]=a[1];b[5]=m(m(m(a[5])));return b}function y(a){var b=[];b[0]=a[4];b[1]=m(a[1]);b[2]=a[0];b[3]=m(m(m(a[3])));b[4]=a[5];b[5]=a[2];return b}function s(a){a=a.replace(/F2/,"F F");a=a.replace(/R2/,"R R");a=a.replace(/U2/,"U U");a=a.replace(/D2/,"D D");a=a.replace(/B2/,"B B");a=a.replace(/L2/,"L L");a=a.replace(/F'/,"F F F");a=a.replace(/R'/,"R R R");a=a.replace(/U'/,"U U U");a=a.replace(/D'/,"D D D");a=a.replace(/B'/,"B B B");a=a.replace(/L'/,"L L L");a=a.replace(/F/,"y y y R y");a=a.replace(/L/,"y y R y y");a=a.replace(/U/,"x y R y y y x x x");a=a.replace(/B/,"y R y y y");a=a.replace(/D/,"x y y y R y x x x");a=a.split(" ");for(b=["RRRRRRRRR".split(""),"WWWWWWWWW".split(""),"GGGGGGGGG".split(""),"YYYYYYYYY".split(""),"BBBBBBBBB".split(""),"OOOOOOOOO".split("")],c=0;c<a.length;++c)"x"==a[c]?b=x(b):"y"==a[c]?b=y(b):"R"==a[c]&&(b=r(b));return p(b)}function p(a){for(var b="",c=0;3>c;++c)b+="\n   "+a[1][3*c+0]+a[1][3*c+1]+a[1][3*c+2];for(c=0;3>c;++c)b+="\n"+a[5][3*c+0]+a[5][3*c+1]+a[5][3*c+2]+a[2][3*c+0]+a[2][3*c+1]+a[2][3*c+2]+a[0][3*c+0]+a[0][3*c+1]+a[0][3*c+2]+a[4][3*c+0]+a[4][3*c+1]+a[4][3*c+2];for(c=0;3>c;++c)b+="\n   "+a[3][3*c+0]+a[3][3*c+1]+a[3][3*c+2];return b}

Ungolfed:

function m(fac){ //Turn a face
    //0 1 2
    //3 4 5
    //6 7 8

    var fac2=[];
    fac2[0]=fac[6];
    fac2[2]=fac[0];
    fac2[8]=fac[2];
    fac2[6]=fac[8];

    fac2[1]=fac[3];
    fac2[5]=fac[1];
    fac2[7]=fac[5];
    fac2[3]=fac[7];

    fac2[4]=fac[4];

    return fac2;
}

function q(face1,face3){ //Swap right third of two faces
    var face2=[];
    face2[0]=face3[0];
    face2[1]=face3[1];
    face2[2]=face1[2];
    face2[3]=face3[3];
    face2[4]=face3[4];
    face2[5]=face1[5];
    face2[6]=face3[6];
    face2[7]=face3[7];
    face2[8]=face1[8];
    return face2;
}

function r(state){ //Apply a R move
    var state2=[];
    state2[0]=m(state[0]);
    //Swap right set of Front, Up, Back, Down (2,1,4,3);

    state2[1]=q(state[2],state[1]);
    state2[4]=q(state[1],state[4]);
    state2[3]=q(state[4],state[3]);
    state2[2]=q(state[3],state[2]);
    state2[5]=state[5];
    return state2;
}

function x(staten){ //Apply a x move
    var state2=[];
    state2[0]=m(staten[0]);
    state2[1]=staten[2];
    state2[2]=staten[3];
    state2[3]=staten[4];
    state2[4]=staten[1];
    state2[5]=m(m(m(staten[5])));
    return state2;
}

function y(state){ //Apply a y move
    var state2=[];
    state2[0]=state[4];
    state2[1]=m(state[1]);
    state2[2]=state[0];
    state2[3]=m(m(m(state[3])));
    state2[4]=state[5];
    state2[5]=state[2];
    return state2;
}

function s(algo){ //Solve a cube, representing every move with x, y and R
    algo=algo.replace(/F2/,"F F");
    algo=algo.replace(/R2/,"R R");
    algo=algo.replace(/U2/,"U U");
    algo=algo.replace(/D2/,"D D");
    algo=algo.replace(/B2/,"B B");
    algo=algo.replace(/L2/,"L L");

    algo=algo.replace(/F'/,"F F F");
    algo=algo.replace(/R'/,"R R R");
    algo=algo.replace(/U'/,"U U U");
    algo=algo.replace(/D'/,"D D D");
    algo=algo.replace(/B'/,"B B B");
    algo=algo.replace(/L'/,"L L L");

    algo=algo.replace(/F/,"y y y R y");
    algo=algo.replace(/L/,"y y R y y");
    algo=algo.replace(/U/,"x y R y y y x x x");
    algo=algo.replace(/B/,"y R y y y");
    algo=algo.replace(/D/,"x y y y R y x x x");

    algo=algo.split(" ");

    var cstate=[["R","R","R","R","R","R","R","R","R"],["W","W","W","W","W","W","W","W","W"],["G","G","G","G","G","G","G","G","G"],["Y","Y","Y","Y","Y","Y","Y","Y","Y"],["B","B","B","B","B","B","B","B","B"],["O","O","O","O","O","O","O","O","O"]];

    for(var i=0;i<algo.length;++i){
        if(algo[i]=="x"){
            cstate=x(cstate);
        }else if(algo[i]=="y"){
            cstate=y(cstate);
        }else if(algo[i]=="R"){
            cstate=r(cstate);
        }
    }

    return p(cstate);
}

function p(cstate){ //Print
    var out="";
    var leftspace="\n   ";
    for(var i=0;i<3;++i){
        out+=leftspace+cstate[1][3*i+0]+cstate[1][3*i+1]+cstate[1][3*i+2]
    }
    for(var i=0;i<3;++i){
        out+="\n"+cstate[5][3*i+0]+cstate[5][3*i+1]+cstate[5][3*i+2]+cstate[2][3*i+0]+cstate[2][3*i+1]+cstate[2][3*i+2]+cstate[0][3*i+0]+cstate[0][3*i+1]+cstate[0][3*i+2]+cstate[4][3*i+0]+cstate[4][3*i+1]+cstate[4][3*i+2]
    }
    for(var i=0;i<3;++i){
        out+=leftspace+cstate[3][3*i+0]+cstate[3][3*i+1]+cstate[3][3*i+2]
    }
    return out;
}

C'était un défi très difficile.

Explication

Prenons l'exemple d'appel s("R U' F").

Le programme ne peut exécuter que des déplacements x, y et R.

U'est égal à U U U, alors remplacez cela.

Fest égal à y y y R y, alors remplacez cela.

R U' F'est donc égal à R U U U y y y R y, que le programme peut exécuter.

cstate est défini avec un cube résolu. Un cube est représenté par un tableau contenant 6 tableaux contenant les 9 autocollants. Le premier tableau est pour R, le second pour U, le troisième pour F, D, B, le dernier tableau est pour L. Quand un y doit être exécuté, le programme échange les quatre tableaux des faces avant, gauche, arrière et droite. Pour un x, il bascule avant, bas, arrière et haut. Chaque rotation fait également pivoter les autres faces, qui n'ont pas été échangées. Le mouvement AR fait pivoter le visage droit et échange la partie droite du front, du haut, du dos et du bas.

Cela pourrait être modifié pour pouvoir résoudre les problèmes avec tous les types de mouvements, en les définissant avec x, y et R.

Paul Schmitz
la source
Je travaille à voler votre concept de seulement 3 coups pour faire mon propre plus court;) Great Idea
Aaron
Alors R U' F2se convertit en R U' F Fpremier, puis R U U U F F, ensuite, R x y R y y y x x x x y R y y y x x x x y R y y y x x x y y y R y y y y R yqu’il exécute? Bizarre .. mais très original. +1 :) Comment avez-vous eu cette idée?
Kevin Cruijssen
2
Mon code convertit U'en U U Utrop, mais xes et ys sont vraiment bons. Je veux voler ça aussi: p
mardi
@KevinCruijssen Les rotations sont beaucoup plus faciles à programmer que les déplacements touchant un seul calque. J'ai d'abord essayé ce concept avec un programme de simulation de cubes NxN, et maintenant, j'ai implémenté une version plus simple ici. Il supprime d'abord any 'et 2, puis remplace tous les mouvements.
Paul Schmitz
Bien fait mais quand même golfable. J'essaie de le porter sur ES6
edc65
11

C, 1715 1709 1686 1336 1328 octets

25 octets sauvés grâce à @KevinCruijssen!

Aucune réponse à ce jour, j'ai donc décidé de mettre ma propre solution.

#define m(a,b,c,d)t[c][d]=r[a][b]; 
#define n(a)m(a,0,a,2)m(a,1,a,5)m(a,2,a,8)m(a,3,a,1)m(a,5,a,7)m(a,6,a,0)m(a,7,a,3)m(a,8,a,6)
#define y memcpy
typedef char R[6][9];R t;F(R r){y(t,r,54);n(0)m(4,6,1,0)m(4,7,1,3)m(4,8,1,6)m(1,0,5,0)m(1,3,5,1)m(1,6,5,2)m(5,0,3,2)m(5,1,3,5)m(5,2,3,8)m(3,2,4,6)m(3,5,4,7)m(3,8,4,8)y(r,t,54);}B(R r){y(t,r,54);n(2)m(1,2,4,0)m(1,5,4,1)m(1,8,4,2)m(3,0,5,6)m(3,3,5,7)m(3,6,5,8)m(4,0,3,6)m(4,1,3,3)m(4,2,3,0)m(5,6,1,8)m(5,7,1,5)m(5,8,1,2)y(r,t,54);}L(R r){y(t,r,54);n(3)m(0,0,5,0)m(0,3,5,3)m(0,6,5,6)m(2,2,4,6)m(2,5,4,3)m(2,8,4,0)m(4,0,0,0)m(4,3,0,3)m(4,6,0,6)m(5,0,2,8)m(5,3,2,5)m(5,6,2,2)y(r,t,54);}E(R r){y(t,r,54);n(1)m(0,2,4,2)m(0,5,4,5)m(0,8,4,8)m(5,2,0,2)m(5,5,0,5)m(5,8,0,8)m(4,2,2,6)m(4,5,2,3)m(4,8,2,0)m(2,0,5,8)m(2,3,5,5)m(2,6,5,2)y(r,t,54);}U(R r){y(t,r,54);n(4)m(0,0,3,0)m(0,1,3,1)m(0,2,3,2)m(1,0,0,0)m(1,1,0,1)m(1,2,0,2)m(2,0,1,0)m(2,1,1,1)m(2,2,1,2)m(3,0,2,0)m(3,1,2,1)m(3,2,2,2)y(r,t,54);}D(R r){y(t,r,54);n(5)m(0,6,1,6)m(0,7,1,7)m(0,8,1,8)m(1,6,2,6)m(1,7,2,7)m(1,8,2,8)m(2,6,3,6)m(2,7,3,7)m(2,8,3,8)m(3,6,0,6)m(3,7,0,7)m(3,8,0,8)y(r,t,54);}a,b,c,d,e,o,p,l;f(char*z,R s){char c[6]="RGOBYW";for(;b<7;b++)for(a=0;a<10;)s[b][a++]=c[b];for(l=strlen(z);l-->0;){d=*z++;if(d-32){e=*z++;if(*z++-32)*z++;o=e-50?e-39?1:3:2;for(p=0;p++<o;)d-70?d-66?d-76?d-82?d-85?D(s):U(s):E(s):L(s):B(s):F(s);}}}

Essayez-le en ligne!

Ancienne version non-golfée:

#include <stdio.h>
#include <stdlib.h>
#include <stdbool.h>
#include <string.h>
#include <ctype.h>

typedef char Tile;
typedef Tile Face[10];
typedef Face Rubik[7];

void main_loop(Rubik);
void rubik_init(Rubik);
void rubik_print(Rubik);
void rotate(Rubik, char, char);
void print_tile(Rubik, int, int);

void F(Rubik);
void B(Rubik);
void L(Rubik);
void R(Rubik);
void U(Rubik);
void D(Rubik);

#define move(a, b, c, d) \
      temp[c][d] = rubik[a][b]

#define move_f(a) \
    move(a, 1, a, 3); \
    move(a, 2, a, 6); \
    move(a, 3, a, 9); \
    move(a, 4, a, 2); \
    move(a, 6, a, 8); \
    move(a, 7, a, 1); \
    move(a, 8, a, 4); \
    move(a, 9, a, 7)

void F(Rubik rubik) {
    Rubik temp;
    memcpy(temp, rubik, sizeof(Rubik));
    move_f(1);
    move(5, 7, 2, 1);
    move(5, 8, 2, 4);
    move(5, 9, 2, 7);
    move(2, 1, 6, 1);
    move(2, 4, 6, 2);
    move(2, 7, 6, 3);
    move(6, 1, 4, 3);
    move(6, 2, 4, 6);
    move(6, 3, 4, 9);
    move(4, 3, 5, 7);
    move(4, 6, 5, 8);
    move(4, 9, 5, 9);
    memcpy(rubik, temp, sizeof(Rubik));
}

void B(Rubik rubik) {
    Rubik temp;
    memcpy(temp, rubik, sizeof(Rubik));
    move_f(3);
    move(2, 3, 5, 1);
    move(2, 6, 5, 2);
    move(2, 9, 5, 3);
    move(4, 1, 6, 7);
    move(4, 4, 6, 8);
    move(4, 7, 6, 9);
    move(5, 1, 4, 7);
    move(5, 2, 4, 4);
    move(5, 3, 4, 1);
    move(6, 7, 2, 9);
    move(6, 8, 2, 6);
    move(6, 9, 2, 3);
    memcpy(rubik, temp, sizeof(Rubik));
}

void L(Rubik rubik) {
    Rubik temp;
    memcpy(temp, rubik, sizeof(Rubik));
    move_f(4);
    move(1, 1, 6, 1);
    move(1, 4, 6, 4);
    move(1, 7, 6, 7);
    move(3, 3, 5, 7);
    move(3, 6, 5, 4);
    move(3, 9, 5, 1);
    move(5, 1, 1, 1);
    move(5, 4, 1, 4);
    move(5, 7, 1, 7);
    move(6, 1, 3, 9);
    move(6, 4, 3, 6);
    move(6, 7, 3, 3);
    memcpy(rubik, temp, sizeof(Rubik));
}

void R(Rubik rubik) {
    Rubik temp;
    memcpy(temp, rubik, sizeof(Rubik));
    move_f(2);
    move(1, 3, 5, 3);
    move(1, 6, 5, 6);
    move(1, 9, 5, 9);
    move(6, 3, 1, 3);
    move(6, 6, 1, 6);
    move(6, 9, 1, 9);
    move(5, 3, 3, 7);
    move(5, 6, 3, 4);
    move(5, 9, 3, 1);
    move(3, 1, 6, 9);
    move(3, 4, 6, 6);
    move(3, 7, 6, 3);
    memcpy(rubik, temp, sizeof(Rubik));
}

void U(Rubik rubik) {
    Rubik temp;
    memcpy(temp, rubik, sizeof(Rubik));
    move_f(5);
    move(1, 1, 4, 1);
    move(1, 2, 4, 2);
    move(1, 3, 4, 3);
    move(2, 1, 1, 1);
    move(2, 2, 1, 2);
    move(2, 3, 1, 3);
    move(3, 1, 2, 1);
    move(3, 2, 2, 2);
    move(3, 3, 2, 3);
    move(4, 1, 3, 1);
    move(4, 2, 3, 2);
    move(4, 3, 3, 3);
    memcpy(rubik, temp, sizeof(Rubik));
}

void D(Rubik rubik) {
    Rubik temp;
    memcpy(temp, rubik, sizeof(Rubik));
    move_f(6);
    move(1, 7, 2, 7);
    move(1, 8, 2, 8);
    move(1, 9, 2, 9);
    move(2, 7, 3, 7);
    move(2, 8, 3, 8);
    move(2, 9, 3, 9);
    move(3, 7, 4, 7);
    move(3, 8, 4, 8);
    move(3, 9, 4, 9);
    move(4, 7, 1, 7);
    move(4, 8, 1, 8);
    move(4, 9, 1, 9);
    memcpy(rubik, temp, sizeof(Rubik));
}

int main(int argc, char *argv[]) {
    Rubik rubik;
    rubik_init(rubik);
    main_loop(rubik);
    return 0;
}

void main_loop(Rubik rubik) {
    char a, b;
    for (;;) {
        a=toupper(getchar());
        if (a == 'Q') break;
        if (a != 10) {
            b=toupper(getchar());
            if (b != 10) getchar();
            rotate(rubik, a, b);
        }
        rubik_print(rubik);
    }
}

void rubik_init(Rubik rubik) {
    int i,n;
    char c[7] = " RGOBYW";

    for (n=1; n<=7; n++)
        for (i=1; i<=10; i++)
            rubik[n][i] = c[n];
}

void rotate(Rubik rubik, char a, char b){
    int i = b == '2' ? 2 : b == '\'' || b == toupper('i') ? 3 : 1;
    int j;
    for (j=0; j<i; j++)
        if (a == 'F') F(rubik);
        else if (a == 'B') B(rubik);
        else if (a == 'L') L(rubik);
        else if (a == 'R') R(rubik);
        else if (a == 'U') U(rubik);
        else if (a == 'D') D(rubik);
        else;
}

void rubik_print(Rubik rubik) {
    int i,j,k;

    for (i=1; i<=9; i++)
        if (i%3==0) {
            print_tile(rubik,5,i);
            printf("\n");
        }
        else if (i%3==1) {
            printf("    ");
            print_tile(rubik,5,i);
        }
        else
            print_tile(rubik,5,i);

    printf("\n");

    for (k=1; k<=3; k++) {
        for (i=3; i<=6; i++) {
            for (j=k*3-2; j<=k*3; j++)
                print_tile(rubik, i%4+1, j);
            printf(" ");
        }
        printf("\n");
    }

    printf("\n");

    for (i=1; i<=9; i++)
        if (i%3==0) {
            print_tile(rubik, 6, i);
            printf("\n");
        }
        else if (i%3==1) {
            printf("    ");
            print_tile(rubik, 6, i);
        }
        else
            print_tile(rubik, 6, i);

}

void print_tile(Rubik rubik, int a, int b) {
    switch (rubik[a][b]) {
      case 'R':
        printf("R");
        break;
      case 'O':
        printf("O");
        break;
      case 'B':
        printf("B");
        break;
      case 'G':
        printf("G");
        break;
      case 'Y':
        printf("Y");
        break;
      case 'W':
        printf("W");
        break;
      default:
        exit(1);
    }
}
betseg
la source
4
I'm no C-programmer, so correct me if I'm wrong, but I believe you can golf some of your for-loops: for(b=1;b<8;b++)for(a=1;a<11;a++)r[b][a]=c[b]; to for(b=1;b<8;)for(a=1;a<11;)r[b][a++]=c[b++]; and for(i=1;i<=9;i++) to for(i=0;++i<=9;), and some of the other for-loops as well. Also, the else if can be changed to just if when you check if(d==66)B(r);if(d==76)L(r);... And, unless i can be negative, you can change if(i%3==0) to if(i%3<1) two times. And I'm sure it can be golfed some more. Nice to see an answer on your own challenge, though. :)
Kevin Cruijssen
I tried golfing the loops down, but it didn't work, so I decided not to touch them. I'm outside and can't try them now. But you're right about ifs and i though, I'll edited them once I go home. Thanks!
betseg
@KevinCruijssen removing elses bork the program, golfing loops bork the program, the thing with i works. Thanks anyway.
betseg
Hmm, why does the else if changing to if fail? :S In each of the else ifs you compare d==##, so I'm confused why it doesn't. Again, I don't program C, so maybe I'm missing something obvious that C can't do, but still.. Ah well, glad I could help with the modulo <1 instead of ==0
Kevin Cruijssen
1
979 bytes
ceilingcat
9

Python 3,  610 563 533  526 bytes

-7 bytes thanks to my colleague rhsmits (really nice d,*c form & removal of redundant parentheses)

This is a full program.

import re
d,*c=[f*9for f in' YBRGOW']
r=lambda f:[f[int(v)]for v in'630741852']
U=lambda c:[r(c[0])]+[c[j%4+1][:3]+c[j][3:]for j in(1,2,3,4)]+[c[5]]
y=lambda c:[r(c[0])]+c[2:5]+[c[1],r(r(r(c[5])))]
z=lambda c:[c[2],r(r(r(c[1]))),c[5],r(c[3]),c[0][::-1],c[4][::-1]]
exec("c="+"(c);c=".join("".join("zzzUz U zzUzz yyyzUzzzy zUzzz yzUzzzyyy".split()[ord(t)%11%7]*(ord(n or'a')%6)for t,n in re.findall("([B-U])(['2i]?)",input())))+"(c)")
k=' '.join
for q in[d,c[0]],c[1:5],[d,c[5]]:
 for w in 0,3,6:print(k(k(f[w:w+3])for f in q))

Superflip and all tests are available at ideone or Try it online!

The program:

  • creates the six faces YBRGOW of stickers.
  • creates a function, r, which only rotates the stickers on a face, clockwise a quarter-turn
  • creates a function, U, which rotates the U face clockwise a quarter-turn by applying r and rotating the stickers on the top-band of LFRB clockwise a quarter-turn
  • creates a function, y, which performs r on the U and D faces and slices LFRB
    - this performs a rotation of the whole cube in the y axis (which runs through U and D)
    - the rotation is clockwise if looking from above
  • creates a function z, which performs a rotation of the whole cube in the z axis clockwise a quarter turn looking at R (the axis runs through R and L) - this time because the way the faces are oriented in our net (same as given in the OP) we have to flip the B and U faces over (they switch from the horizontal to vertical parts of the net and vice-versa)
  • Performs a regex on the input, input(), (the moves to be performed) matching a character from BUDLRF (actually B-U) possibly followed by a character 'i2
  • Performs a mapping from the 'i2 to the number of clockwise turns (the ordinals of these mod 6 does the job, with a dummy a to yield 1 when none is present)
  • Performs a lookup to map each of these single clockwise turn instructions to a setup of calls to y and z, a quarter-turn of U (which will now be the face instructed), and then the calls to inverse the sequence of the setup performed. Taking the ordinal of the face character modulo by 11 then by 7 maps B:0 U:1 D:2 L:3 F:4 R:5, allowing a simple indexing into a string of the function name sequences split by spaces.
  • executes the string to actually perform the manoeuvre
  • creates a dummy face d to shorten the printing
  • prints the result by stepping through the rows in the net and the faces in the row (including a dummy face to the left of each of U and D

Here is the superflip:

D:\Python Scripts>python rubiksAscii.py
U R2 F B R B2 R U2 L B2 R U' D' R2 F R' L B2 U2 F2
      Y O Y
      B Y G
      Y R Y
B Y B R Y R G Y G O Y O
O B R B R G R G O G O B
B W B R W R G W G O W O
      W R W
      B W G
      W O W
Jonathan Allan
la source
8

Python 760 750 649 Bytes

shamelessly stole the idea of using only 3 rotations from @Paul Schmitz :D

new version:

from numpy import*
c=kron([[32,89,32,32],[66,82,71,79],[32,87,32,32]],ones([3,3])).astype(int)
def x():t=copy(c);c[:3,3:6],c[3:6,3:6],c[6:,3:6],c[3:6,9:],c[3:6,:3],c[3:6,6:9]=t[3:6,3:6],t[6:,3:6],rot90(t[3:6,9:],2),rot90(t[:3,3:6],2),rot90(t[3:6,:3]),rot90(t[3:6,6:9],3)
def y():c[3:6],c[:3,3:6],c[6:,3:6]=roll(c[3:6],3,1),rot90(c[:3,3:6]),rot90(c[6:,3:6],3)
def F():c[2:7,2:7]=rot90(c[2:7,2:7],3)
s=raw_input()
for p in"':i,Fi:FFF,F2:FF,Bi:BBB,B2:BB,Ri:RRR,R2:RR,Li:LLL,L2:LL,Ui:UUU,U2:UU,Di:DDD,D2:DD,B:xxFxx,R:yyyFy,L:yFyyy,U:xxxFx,D:xFxxx".split(','):s=s.replace(*p.split(':'))
for S in s:eval(S+'()')
for r in c:print(''.join(chr(x)for x in r))

I mostly just did lots of numpy list slicing and used its built in rotate and roll functions. Input is handled by calling the functions directly with eval()

from numpy import*
l=[0];c=kron([[32,89,32,32],[66,82,71,79],[32,87,32,32]],ones([3,3])).astype(int)
def i():l[0]();l[0]()
def d():l[0]()
def U():c[:3,3:6]=rot90(c[:3,3:6],3);c[3]=roll(c[3],9);l[0]=U
def D():c[6:,3:6]=rot90(c[6:,3:6],3);c[5]=roll(c[5],3);l[0]=D
def F():c[2:7,2:7]=rot90(c[2:7,2:7],3);l[0]=F
def B():c[3:6,9:]=rot90(c[3:6,9:],3);t=copy(c);c[:,:9],c[1:-1,1:8]=rot90(t[:,:9]),t[1:-1,1:8];l[0]=B
def R():c[3:6,6:9]=rot90(c[3:6,6:9],3);t=copy(c);c[:6,5],c[3:6,9],c[6:,5]=t[3:,5],t[2::-1,5],t[5:2:-1,9];l[0]=R
def L():c[3:6,:3]=rot90(c[3:6,:3],3);t=copy(c);c[3:,3],c[3:6,-1],c[:3,3]=t[:6,3],t[:5:-1,3],t[5:2:-1,-1];l[0]=L
for s in raw_input().replace("'",'i').replace('2','d').replace(' ',''):eval(s+'()')
for r in c:print(''.join(chr(x)for x in r))

ungolfed..

import numpy as np
last = [0] #store last move to repeat for inverse or double
           #list is shorter syntax than global var

cube = np.array([
[' ',' ',' ','Y','Y','Y',' ',' ',' ',' ',' ',' '],
[' ',' ',' ','Y','Y','Y',' ',' ',' ',' ',' ',' '],
[' ',' ',' ','Y','Y','Y',' ',' ',' ',' ',' ',' '],
['B','B','B','R','R','R','G','G','G','O','O','O'],
['B','B','B','R','R','R','G','G','G','O','O','O'],
['B','B','B','R','R','R','G','G','G','O','O','O'],
[' ',' ',' ','W','W','W',' ',' ',' ',' ',' ',' '],
[' ',' ',' ','W','W','W',' ',' ',' ',' ',' ',' '],
[' ',' ',' ','W','W','W',' ',' ',' ',' ',' ',' ']
]) #ascii ascii codes in golfed version

def i(): #triple move (inverse)
    last[0]()
    last[0]()

def d(): #double move
    last[0]()

def U(): #clockwise upface (yellow)
    cube[:3,3:6] = np.rot90(cube[:3,3:6],3)
    cube[3] = np.roll(cube[3],9)
    last[0] = U

def D(): #clockwise downface (white)
    cube[6:,3:6] = np.rot90(cube[6:,3:6],3)
    cube[5] = np.roll(cube[5],3)
    last[0] = D

def F(): #clockwise frontface (red)
    cube[2:7,2:7] = np.rot90(cube[2:7,2:7],3)
    last[0] = F

def B(): #clockwise backface (orange)
    cube[3:6,9:] = np.rot90(cube[3:6,9:],3)
    tempCube = np.copy(cube)
    cube[:,:9],cube[1:-1,1:8] = np.rot90(tempCube[:,:9]),tempCube[1:-1,1:8]
    last[0] = B

def R(): #clockwise rightface (green)
    cube[3:6,6:9] = np.rot90(cube[3:6,6:9],3)
    tempCube = np.copy(cube)
    cube[:6,5],cube[3:6,9],cube[6:,5] = tempCube[3:,5],tempCube[2::-1,5],tempCube[5:2:-1,9]
    last[0] = R

def L(): #clockwise leftface (blue)
    cube[3:6,:3] = np.rot90(cube[3:6,:3],3)
    tempCube = np.copy(cube)
    cube[3:,3],cube[3:6,-1],cube[:3,3] = tempCube[:6,3],tempCube[:5:-1,3],tempCube[5:2:-1,-1]
    last[0] = L


for character in raw_input('type a move sequence: ').replace("'",'i').replace('2','d').replace(' ',''):
    eval(character+'()')

print("-"*12)

for row in cube:
    print(''.join(character for character in row)) #uses ascii codes in golfed version

test input:

>>> runfile('C:~/rubiks cube.py', wdir='C:~/python/golf')
U2 L' D
   OYY      
   RYY      
   RYY      
GBBWOOBBBRRY
GBBWRRGGGOOY
OOYGBBWRRGGG
   ROO      
   WWW      
   WWW 

Comments or suggestions are greatly appreciated :)

Aaron
la source
2
of using only 3 rotations wrong. The program converts any sequence into a sequence with more moves. If you input F F F F, it uses more than 3 rotations, as it converts to y y y R y y y y R y y y y R y y y y R y. It uses three types of rotations.
Paul Schmitz
@PaulSchmitz three types is what I meant.... conversions are listed in the string in the seventh line
Aaron
7

C, 839 bytes

#include <stdio.h>
#define b(c) c,c+1,c+2,c+15,c+28,c+27,c+26,c+13
char a[]="   YYY      \n   YYY      \n   YYY      \nBBBRRRGGGOOO\nBBBRRRGGGOOO\nBBBRRRGGGOOO\n   WWW      \n   WWW      \n   WWW      \n",k;int d[][8]={b(3),b(39),b(42),b(45),b(48),b(81)},e[][12]={50,49,48,47,46,45,44,43,42,41,40,39,3,16,29,42,55,68,81,94,107,76,63,50,29,30,31,45,58,71,83,82,81,67,54,41,109,96,83,70,57,44,31,18,5,48,61,74,39,52,65,107,108,109,73,60,47,5,4,3,65,66,67,68,69,70,71,72,73,74,75,76},i,*j,r,p,q,s;f(int*g,int h){i=h<0?-1:1;for(j=g;j!=g+h;j+=i){k=a[j[3*h]];for(r=3;r--;)a[j[r*h+h]]=a[j[r*h]];a[*j]=k;}}l(int g,int m){f(d[g+m]-m,m?-2:2);f(e[g+m]-m,m?-3:3);}void n(char*o){while(*o){*o-'U'||(p=0);*o-'L'||(p=1);*o-'F'||(p=2);*o-'R'||(p=3);*o-'B'||(p=4);*o-'D'||(p=5);s=*++o=='\''||*o=='i';q=*o=='2';(s||q)&&o++;l(p,s);q&&l(p,0);}printf("%s",a);}

As this is not a full program (function with input from a string argument and output to the console), you need to call it like this:

int main() {
//  n("U2D2R2L2F2B2");    //checker cube
    n("UDiRL'FBiUD'");    //spotted cube
}

Use only one call at a time as the function uses and modifies global variables.

Ungolfed:

#include <stdio.h>

char cube[] = "   YYY      \n"
              "   YYY      \n"
              "   YYY      \n"
              "BBBRRRGGGOOO\n"
              "BBBRRRGGGOOO\n"
              "BBBRRRGGGOOO\n"
              "   WWW      \n"
              "   WWW      \n"
              "   WWW      \n";

#define faceMove(offset) offset,offset+1,offset+2,offset+15,offset+28,offset+27,offset+26,offset+13
int faceMoves[6][8] = {
    faceMove(3),    //Up
    faceMove(39),   //Left
    faceMove(42),   //Front
    faceMove(45),   //Right
    faceMove(48),   //Back
    faceMove(81)    //Down
}, lineMoves[6][12] = {
    50,49,48,47,46,45,44,43,42,41,40,39,    //Up
    3,16,29,42,55,68,81,94,107,76,63,50,    //Left
    29,30,31,45,58,71,83,82,81,67,54,41,    //Front
    109,96,83,70,57,44,31,18,5,48,61,74,    //Right
    39,52,65,107,108,109,73,60,47,5,4,3,    //Back
    65,66,67,68,69,70,71,72,73,74,75,76 //Down
};

int rotate(int*move,int rotation){
    int sign=rotation<0?-1:1;
    for(int*submove=move;submove!=move+rotation;submove+=sign){
        char takeout=cube[submove[3*rotation]];
        for(int j=3;j--;)cube[submove[j*rotation+rotation]]=cube[submove[j*rotation]];
        cube[*submove]=takeout;
    }
}

int move(int move,int inverted){
    rotate(faceMoves[move+inverted]-inverted,inverted?-2:2);
    rotate(lineMoves[move+inverted]-inverted,inverted?-3:3);
}

void performMoves(char*instructions){
    while(*instructions){
        int moveIndex;
        *instructions-'U'||(moveIndex=0);
        *instructions-'L'||(moveIndex=1);
        *instructions-'F'||(moveIndex=2);
        *instructions-'R'||(moveIndex=3);
        *instructions-'B'||(moveIndex=4);
        *instructions-'D'||(moveIndex=5);
        int inverted=*++instructions=='\''||*instructions=='i', twice=*instructions=='2';
        (inverted||twice)&&instructions++;
        move(moveIndex,inverted);
        twice&&move(moveIndex,0);
    }
    printf("%s",cube);
}

int main() {
//  performMoves("U2D2R2L2F2B2");    //checker cube
    performMoves("UDiRL'FBiUD'");    //spotted cube
}

As you can see, the main idea is to use a fully data-driven approach: The different rotations are expressed as lists of indices that have to be permuted. The permutation code can thus be very short and generic.

cmaster
la source
2
Welcome to PPCG! Nice first post!
Rɪᴋᴇʀ
You can do the following to save more bytes: f(h,g)int*g;{ -2, l(g,m){ -8, n(char*o){ -5, printf("%s",a) to puts(a) -7, also you can replace char constants with their ASCII decimal representation -1 each
Khaled.K
572 bytes
ceilingcat
5

Cubically, 2 bytes

¶■

Try it online!

Explanation:

¶   read a line from stdin, evaluate
 ■  print the cube to stdout

If extraneous output is allowed, this is an alternative. 1 byte:

Try it online!

Cubically automatically dumps its memory cube to STDERR when the program ends. However, it also prints the notepad beforehand.

MD XF
la source
2
I don't know whether to applaud or boo you. +1
Jo King
@JoKing Both. Just like when Cubically pwns other cube challenges. 1 2 3
MD XF
4

JavaScript (ES6), 820

A porting of the buggy answer by @Paul Schmitz. It's still not completely golfed, but it has the added value that it works.

The main problem in the original answer is that a single function Q is not enough for all the movements involved in a rotation. I had to add 2 other functions O and N. All of them are just called in the right rotation function R.

(a,M=a=>[a[6],a[3],a[0],a[7],a[4],a[1],a[8],a[5],a[2]],Q=(a,b)=>[b[0],b[1],a[2],b[3],b[4],a[5],b[6],b[7],a[8]],N=(a,b)=>[b[0],b[1],a[6],b[3],b[4],a[3],b[6],b[7],a[0]],O=(a,b)=>[b[8],a[1],a[2],b[5],a[4],a[5],b[2],a[7],a[8]],R=a=>[M(a[0]),Q(a[2],a[1]),Q(a[3],a[2]),N(a[4],a[3]),O(a[4],a[1]),a[5]],X=a=>[M(a[0]),a[2],a[3],M(M(a[4])),M(M(a[1])),M(M(M(a[5])))],Y=a=>[a[4],M(a[1]),a[0],M(M(M(a[3]))),a[5],a[2]],F=c=>Array(9).fill(c[0]),r='replace',b=[F`G`,F`Y`,F`R`,F`W`,F`O`,F`B`],J=(p,l)=>p.join``[r](/.../g,l))=>(a[r](/(.)2/g,"$1$1")[r](/(.)['i]/g,"$1$1$1")[r](/F/g,"yyyRy")[r](/L/g,"yyRyy")[r](/B/g,"yRyyy")[r](/U/g,"xyRyyyxxx")[r](/D/g,"xyyyRyxxx")[r](/\w/g,c=>b=(c<'a'?R:c<'y'?X:Y)(b)),o=J(b[1],`
   $&`),J(b[5],(c,p)=>o+=`
`+c+b[2].join``.substr(p,3)+b[0].join``.substr(p,3)+b[4].join``.substr(p,3)),o+J(b[3],`
   $&`))

More readable maybe

( 
  a, 
  // local variables as default parameters
  r='replace',
  F=c=>Array(9).fill(c[0]), // function to fill a 3x3 square
  b=[F`G`,F`Y`,F`R`,F`W`,F`O`,F`B`], // cube status
  // aux functions to perform basic moves
  M=a=>[a[6],a[3],a[0],a[7],a[4],a[1],a[8],a[5],a[2]],
  Q=(a,b)=>[b[0],b[1],a[2],b[3],b[4],a[5],b[6],b[7],a[8]],
  N=(a,b)=>[b[0],b[1],a[6],b[3],b[4],a[3],b[6],b[7],a[0]],
  O=(a,b)=>[b[8],a[1],a[2],b[5],a[4],a[5],b[2],a[7],a[8]],
  // R : right side rotation
  R=a=>[M(a[0]),Q(a[2],a[1]),Q(a[3],a[2]),N(a[4],a[3]),O(a[4],a[1]),a[5]],
  // X,Y: to put other sides in place of right side
  X=a=>[M(a[0]),a[2],a[3],M(M(a[4])),M(M(a[1])),M(M(M(a[5])))],
  Y=a=>[a[4],M(a[1]),a[0],M(M(M(a[3]))),a[5],a[2]],
  // aux function for output
  J=(p,l)=>p.join``[r](/.../g,l),
) => (
  // convert common moves to basic moves
  a[r](/(.)2/g,"$1$1")[r](/(.)['i]/g,"$1$1$1")[r](/F/g,"yyyRy")[r](/L/g,"yyRyy")[r](/B/g,"yRyyy")[r](/U/g,"xyRyyyxxx")[r](/D/g,"xyyyRyxxx")
  // then execute each
  [r](/\w/g,c=>b=c<'a'?R(b):c<'y'?X(b):Y(b)),
  // built output in o
  o=J(b[1],'\n   $&'),
  J(b[5],(c,p)=>o+='\n'+c+b[2].join``.substr(p,3)+b[0].join``.substr(p,3)+b[4].join``.substr(p,3)),
  o+J(b[3],'\n   $&') // returned output
)

S=
(a,M=a=>[a[6],a[3],a[0],a[7],a[4],a[1],a[8],a[5],a[2]],Q=(a,b)=>[b[0],b[1],a[2],b[3],b[4],a[5],b[6],b[7],a[8]],N=(a,b)=>[b[0],b[1],a[6],b[3],b[4],a[3],b[6],b[7],a[0]],O=(a,b)=>[b[8],a[1],a[2],b[5],a[4],a[5],b[2],a[7],a[8]],R=a=>[M(a[0]),Q(a[2],a[1]),Q(a[3],a[2]),N(a[4],a[3]),O(a[4],a[1]),a[5]],X=a=>[M(a[0]),a[2],a[3],M(M(a[4])),M(M(a[1])),M(M(M(a[5])))],Y=a=>[a[4],M(a[1]),a[0],M(M(M(a[3]))),a[5],a[2]],F=c=>Array(9).fill(c[0]),r='replace',b=[F`G`,F`Y`,F`R`,F`W`,F`O`,F`B`],J=(p,l)=>p.join``[r](/.../g,l))=>(a[r](/(.)2/g,"$1$1")[r](/(.)['i]/g,"$1$1$1")[r](/F/g,"yyyRy")[r](/L/g,"yyRyy")[r](/B/g,"yRyyy")[r](/U/g,"xyRyyyxxx")[r](/D/g,"xyyyRyxxx")[r](/\w/g,c=>b=(c<'a'?R:c<'y'?X:Y)(b)),o=J(b[1],`
   $&`),J(b[5],(c,p)=>o+=`
`+c+b[2].join``.substr(p,3)+b[0].join``.substr(p,3)+b[4].join``.substr(p,3)),o+J(b[3],`
   $&`))

function update() { O.textContent=S(I.value) }

update()
<input id=I value='U2 Li D' oninput='update()'><pre id=O></pre>

edc65
la source
I get update() is not defined in my console while running the snippet
Kritixi Lithos
@KritixiLithos you have probably a sintax error, for not having a ES6 compliant browser. I tested it with Firefox, what browser are you using?
edc65
I'm using Chrome
Kritixi Lithos
@KritixiLithos my fault, there was an unnecessary comma. Fixed
edc65