Upgoat ou Downgoat?

309

Dans l’optique d’une image de chèvre, votre programme devrait au mieux essayer de déterminer si la chèvre est à l’envers ou non.

Exemples

Ce sont des exemples de ce que l’entrée peut être. Pas d'entrées réelles

Contribution:

Downgoat

Sortie: Downgoat

Spec

Votre programme ne devrait pas dépasser 30 000 octets.

  • L'entrée contiendra la chèvre complète
  • La photo contiendra toujours une chèvre
  • Si la chèvre est à l'envers, sortie Downgoat, sinonUpgoat

L'entrée sera toutefois vous pouvez prendre une image en tant qu'entrée (nom de fichier, base64 de l'image, etc.)

Ne vous fiez pas au nom de l’image ou à d’autres métadonnées pour contenir «Upgoat» ou «Downgoat», car les noms de fichier de référence sont juste pour référence.


S'il vous plaît ne pas hardcode . C'est ennuyeux, je ne peux pas l'appliquer complètement mais je peux demander gentiment.

Cas de test

Gist avec des images . les images commençant par downgoatont une Downgoatsortie et les images commençant par upgoatont une Upgoatsortie.

Deuxième lot de cas de test Assurez-vous de tester vos images sur tous les cas de test. Ces images sont un jpgs. Les tailles d'image ne varient mais pas par ce que beaucoup.


Remarque: Quelques cas de test peuvent être ajoutés avant d'accepter une réponse afin d'éviter les réponses codées en dur et de vérifier les performances générales du programme.

Points bonus pour obtenir mon avatar correct: P

Notation

Le score est un pourcentage qui peut être calculé par: (number_correct / total) * 100

Downgoat
la source
1
Est-ce que "convenir" compte comme codage en dur?
Nick T
@ NickT qu'entendez-vous par "ajustement"?
Downgoat
@Downgoat paramètres à venir pour un modèle (équation) qui s'affiche si la chèvre fait face à la bonne manière. Par " " ajustement " ", j'entends l'adaptation du modèle à l'ensemble des données, par opposition à un ensemble de formation.
Nick T
29
Je suis curieux de voir comment ces solutions traiteront deux chèvres en une seule photo.
Daniel

Réponses:

293

Mathematica, 100%, 141 octets

f@x_:=Count[1>0]@Table[ImageInstanceQ[x,"caprine animal",RecognitionThreshold->i/100],{i,0,50}];If[f@#>f@ImageReflect@#,"Up","Down"]<>"goat"&

Eh bien, cela ressemble plus à de la triche. C'est aussi incroyablement lent et très bête. Function fvoit à peu près à quelle hauteur vous pouvez définir le seuil de reconnaissance dans l’un des systèmes intégrés de vision par ordinateur de Mathematica tout en reconnaissant l’image comme un animal caprin.

Nous voyons alors si l'image ou l'image retournée est plus boueuse. Ne fonctionne que sur l’image de votre profil car l’égalité est brisée au profit de downgoat. Il y a probablement beaucoup de façons d'améliorer cela, notamment de lui demander si l'image représente des bovidés ou d'autres généralisations du type d'entité Caprine.

La réponse sous forme écrite marque 100% pour le premier ensemble de tests et 94% pour le second ensemble de tests, car l'algorithme donne un résultat non concluant pour la chèvre 1. Ce résultat peut être remonté à 100% au prix d'un temps de calcul encore plus long. tester plus de valeurs de RecognitionThreshold. Ressuscitant 100à 1000sufficies; Pour une raison quelconque, Mathematica pense que c'est une image très inconsistante! Changer l'entité de reconnaissance d'un animal caprin à un mammifère sabot semble également fonctionner.

Ungolfed:

goatness[image_] := Count[
                      Table[
                        ImageInstanceQ[
                          image, Entity["Concept", "CaprineAnimal::4p79r"],
                          RecognitionThreshold -> threshold
                        ],
                        {threshold, 0, 0.5, 0.01}
                      ],
                      True
                    ]

Function[{image},
  StringJoin[      
    If[goatness[image] > goatness[ImageReflect[image]],
      "Up",
      "Down"
    ],
    "goat"
  ]
]

Solution alternative, bonus de 100% +

g[t_][i_] := ImageInstanceQ[i, "caprine animal", RecognitionThreshold -> t]
f[i_, l_: 0, u_: 1] := Module[{m = (2 l + u)/3, r},
  r = g[m] /@ {i, ImageReflect@i};
  If[Equal @@ r,
   If[First@r, f[i, m, u], f[i, l, m]],
   If[First@r, "Up", "Down"] <> "goat"
   ]
  ]

Celui-ci utilise la même stratégie qu'auparavant, mais avec une recherche binaire au dessus du seuil. Il y a deux fonctions impliquées ici:

  • g[t]retourne si son argument est une image de chèvre avec seuil t.
  • fprend trois paramètres: une image et une limite supérieure et inférieure sur le seuil. C'est récursif; cela fonctionne en testant un seuil mentre les seuils haut et bas (biaisé vers le bas). Si l'image et l'image réfléchie sont toutes deux bougeuses ou non, cela élimine la partie inférieure ou supérieure de la plage, selon le cas, et se rappelle. Sinon, si une image est chèvre et que l'autre n'est pas chèvre, elle est retournée Upgoatsi la première image est chèvre et Downgoatsinon (si la seconde, l'image réfléchie est chèvre).

Les définitions de fonctions méritent une petite explication. Tout d'abord, l'application de la fonction est associative à gauche. Cela signifie que quelque chose comme g[x][y]est interprété comme (g[x])[y]; "le résultat de g[x]appliqué à y."

Deuxièmement, l'attribution dans Mathematica équivaut à peu près à définir une règle de remplacement. Autrement dit, f[x_] := x^2ne signifie pas "déclarer une fonction nommée favec le paramètre xqui retourne x^2;" sa signification est plus proche de, "chaque fois que vous voyez quelque chose comme f[ ... ], appelez la chose à l'intérieur xet remplacez la chose entière par x^2".

En réunissant ces deux éléments, nous pouvons voir que la définition de gindique à Mathematica de remplacer toute expression de la forme (g[ ... ])[ ... ]par la partie droite de la tâche.

Lorsque Mathematica rencontre l'expression g[m](dans la deuxième ligne de f), il voit que l'expression ne correspond à aucune règle connue et la laisse inchangée. Ensuite, il correspond à l' Mapopérateur /@, dont les arguments sont g[m]et à la liste {i, ImageReflect@i}. ( /@est une notation infixe; cette expression est exactement équivalente à Map[g[m], { ... }].) Le Mapest remplacé par l'application de son premier argument à chaque élément de son second argument, nous obtenons donc {(g[m])[i], (g[m])[ ... ]}. Mathematica voit maintenant que chaque élément correspond à la définition de get effectue le remplacement.

De cette manière, nous devons gagir comme une fonction qui renvoie une autre fonction. c'est-à-dire qu'il agit à peu près comme nous l'avons écrit:

g[t_] := Function[{i}, ImageInstanceQ[i, "caprine animal", RecognitionThreshold -> t]]

(Sauf dans ce cas, cela g[t]équivaut à un Function, alors qu'avant g[t], il n'était pas transformé du tout.)

Le dernier tour que j'utilise est un motif optionnel. Le modèle l_ : 0signifie "correspond à n'importe quelle expression et le rend disponible en tant que l, ou ne correspond à rien et le rend 0disponible l". Donc, si vous appelez f[i]avec un seul argument (l’image à tester), c’est comme si vous aviez appelé f[i, 0, 1].

Voici le harnais de test que j'ai utilisé:

gist = Import["https://api.github.com/gists/3fb94bfaa7364ccdd8e2", "JSON"];
{names, urls} = Transpose[{"filename", "raw_url"} /. Last /@ ("files" /. gist)];
images = Import /@ urls;
result = f /@ images
Tally@MapThread[StringContainsQ[##, IgnoreCase -> True] &, {names, result}]
(* {{True, 18}} *)

user = "items" /.
           Import["https://api.stackexchange.com/2.2/users/40695?site=codegolf", "JSON"];
pic = Import[First["profile_image" /. user]];
name = First["display_name" /. user];
name == f@pic
(* True *)
Un simmons
la source
344
Mathematica a une fonction intégrée pour la détermination des chèvres. Je ne sais pas comment me sentir à ce sujet.
Robert Fraser
119
Whaaat Oo il y a un construit pour cela .... Wow ...
Downgoat 10/02/2016
171
Vous vous
foutez de
27
+1 pour que Mathematica puisse voir quelle image est "plus chèvre".
QBrute
9
C'est positivement ridicule. +1
ApproachingDarknessFish
71

JavaScript, 93,9%

var solution = function(imageUrl, settings) {

  // Settings
  settings = settings || {};
  var colourDifferenceCutoff = settings.colourDifferenceCutoff || 0.1,
      startX = settings.startX || 55,
      startY = settings.startY || 53;

  // Draw the image to the canvas
  var canvas = document.createElement("canvas"),
      context = canvas.getContext("2d"),
      image = new Image();
  image.src = imageUrl;
  image.onload = function(e) {
    canvas.width = image.width;
    canvas.height = image.height;
    context.drawImage(image, 0, 0);

    // Gets the average colour of an area
    function getColour(x, y) {

      // Get the image data from the canvas
      var sizeX = image.width / 100,
          sizeY = image.height / 100,
          data = context.getImageData(
            x * sizeX | 0,
            y * sizeY | 0,
            sizeX | 0,
            sizeY | 0
          ).data;

      // Get the average of the pixel colours
      var average = [ 0, 0, 0 ],
          length = data.length / 4;
      for(var i = 0; i < length; i++) {
        average[0] += data[i * 4] / length;
        average[1] += data[i * 4 + 1] / length;
        average[2] += data[i * 4 + 2] / length;
      }
      return average;
    }

    // Gets the lightness of similar colours above or below the centre
    function getLightness(direction) {
      var centre = getColour(startX, startY),
          colours = [],
          increment = direction == "above" ? -1 : 1;
      for(var y = startY; y > 0 && y < 100; y += increment) {
        var colour = getColour(startX, y);

        // If the colour is sufficiently different
        if(
          (
            Math.abs(colour[0] - centre[0]) +
            Math.abs(colour[1] - centre[1]) +
            Math.abs(colour[2] - centre[2])
          ) / 256 / 3
          > colourDifferenceCutoff
        ) break;
        else colours.push(colour);
      }

      // Calculate the average lightness
      var lightness = 0;
      for(var i = 0; i < colours.length; i++) {
        lightness +=
          (colours[i][0] + colours[i][1] + colours[i][2])
          / 256 / 3 / colours.length;
      }

      /*
      console.log(
        "Direction:", direction,
        "Checked y = 50 to:", y,
        "Average lightness:", lightness
      );
      */
      return lightness;
    }

    // Compare the lightness above and below the starting point
    //console.log("Results for:", imageUrl);
    var above = getLightness("above"),
        below = getLightness("below"),
        result = above > below ? "Upgoat" : "Downgoat";
    console.log(result);
    return result;
  };
};
<div ondrop="event.preventDefault();r=new FileReader;r.onload=e=>{document.getElementById`G`.src=imageUrl=e.target.result;console.log=v=>document.getElementById`R`.textContent=v;solution(imageUrl);};r.readAsDataURL(event.dataTransfer.files[0]);" ondragover="event.preventDefault()" style="height:160px;border-radius:12px;border:2px dashed #999;font-family:Arial,sans-serif;padding:8px"><p style="font-style:italic;padding:0;margin:0">Drag & drop image <strong>file</strong> (not just link) to test here... (requires HTML5 browser)</p><image style="height:100px" id="G" /><pre id="R"></pre></div>

Explication

Mise en œuvre simple de l 'idée de @BlackCap de vérifier d' où vient la lumière.

La plupart des chèvres sont au centre de leurs images et leur ventre est toujours plus sombre que leur dos à cause de la lumière du soleil. Le programme commence au milieu de l'image et note la couleur. La luminosité moyenne des pixels situés au-dessus et au-dessous du centre est alors atteinte jusqu'à ce que la couleur soit différente de la couleur au centre (lorsque le corps de la chèvre se termine et l'arrière-plan commence). Le côté le plus léger détermine s'il s'agit d'une hausse ou d'une baisse.

Échec pour les commandes descendantes 9 et ascendantes 7 et 9 dans le deuxième cas test.

utilisateur81655
la source
4
Agréable! Je ne m'attendais pas à ce que 100% soit aussi facile. J'ai ajouté un deuxième lot de cas de test . Pouvez-vous mettre à jour votre réponse en fonction de cela?
Downgoat
Voici un lien alternatif ça marche?
Downgoat
@ Downgoat Yep. Score mis à jour.
user81655
Malheureusement, il échoue après que j'ai fait pivoter l'image de 180 ° et que je l'ai retournée verticalement. capture d'écran
mr5
@ mr5 Intéressant ... L'image de votre capture d'écran est-elle légèrement différente de celle de Downgoat 4? En outre, il existe de légères différences entre les navigateurs (et peut-être les systèmes d'exploitation?). Avec les paramètres de cette réponse, j'ai obtenu les mêmes résultats pour Chrome et Firefox (sous Windows).
user81655
63

Python, 100%, 225 octets

import requests

SEARCH = "http://www.bing.com/images/searchbyimage?FORM=IRSBIQ&cbir=sbi&imgurl="
THRESHOLD = 30
url = raw_input()
print "Upgoat" if requests.get(SEARCH + url).content.count('img') > THRESHOLD else "Downgoat"

Utilisez la recherche d'images inversée sur la chèvre. Si la page renvoie une quantité satisfaisante de résultats, il s'agit probablement d'une chèvre ascendante. Cette solution ne fonctionnera probablement pas sur les chèvres dessinées à la main ou si Bing est corrompu.

jasonshao
la source
32
Je ne suis pas sûr de ce que je ressens à propos de cette réponse. Il est à la limite de la validité et viole presque cette échappatoire . Actuellement, il enfreint la règle explicite voulant que l'entrée soit un fichier ou un chemin local, et non une URL. C'est une réponse intéressante, mais vu sa validité limite, je dirais que sa compétitivité est discutable.
Downgoat
50
@Downgoat donc vous avez rétrogradé sa réponse?
Ave
2
corrigez-le en téléchargeant le fichier dans imgur ou quelque chose comme ça ^^ Pourquoi aussi dans le monde utiliseriez-vous bing ???
Eumel
17
@Eumel Parce que Google vérifie si l'agent utilisateur de la requête HTTP appartient à un navigateur Web réel (ou à quelque chose qu'ils autorisent) et non à une autre application ou un autre script. Bing ne vérifie pas cela, ils sont un peu désespérés pour recevoir les demandes entrantes. J'imagine que User-Agent peut être falsifié avec du code supplémentaire et que cela n'a pas d'importance, car ce n'est pas du code-golf.
JordiVilaplana
14
Cette échappatoire standard existe pour les réponses de code de golf afin de les réduire. Ce n'est pas un défi de code-golf, donc je ne vois pas pourquoi cette échappatoire s'appliquerait.
SztupY
58

Java, 93,9% 100%

Cela fonctionne en déterminant le contraste des lignes dans la partie supérieure et inférieure de l'image. Je suppose que le contraste dans la moitié inférieure de l'image est plus important pour 2 raisons:

  • les 4 pattes sont dans la partie basse
  • l'arrière-plan dans la partie supérieure sera flou, car il s'agit généralement de la zone floue

Je détermine le contraste pour chaque ligne en calculant la différence entre les valeurs de pixels voisins, en quadrillant la différence et en faisant la somme de tous les carrés.

Mise à jour

Certaines images du deuxième lot ont posé des problèmes avec l'algorithme d'origine.

upgoat3.jpg

Cette image utilisait une transparence qui avait été ignorée auparavant. Il existe plusieurs possibilités pour résoudre ce problème, mais j’ai simplement choisi de rendre toutes les images sur un fond noir 400x400. Cela présente les avantages suivants:

  • gère les images avec canal alpha
  • gère les images indexées et en niveaux de gris
  • améliore les performances (pas besoin de traiter ces images 13MP)

downgoat8.jpg / upgoat8.jpg

Ces images ont des détails exagérés dans le corps de la chèvre. La solution ici était de rendre l’image floue dans le sens vertical uniquement. Cependant, cela a généré des problèmes avec les images du premier lot, qui ont des structures verticales en arrière-plan. La solution ici consistait simplement à compter les différences dépassant un certain seuil et à ignorer la valeur réelle de la différence.

En bref, l’algorithme mis à jour recherche les zones avec de nombreuses différences dans les images qui, après le prétraitement, ressemblent à ceci:

entrez la description de l'image ici

import java.awt.Graphics2D;
import java.awt.RenderingHints;
import java.awt.image.BufferedImage;
import java.awt.image.Raster;
import java.io.File;
import java.io.IOException;

import javax.imageio.ImageIO;

public class UpDownGoat {
    private static final int IMAGE_SIZE = 400;
    private static final int BLUR_SIZE = 50;

    private static BufferedImage blur(BufferedImage image) {
        BufferedImage result = new BufferedImage(image.getWidth(), image.getHeight() - BLUR_SIZE + 1,
                BufferedImage.TYPE_INT_RGB);
        for (int b = 0; b < image.getRaster().getNumBands(); ++b) {
            for (int x = 0; x < result.getWidth(); ++x) {
                for (int y = 0; y < result.getHeight(); ++y) {
                    int sum = 0;
                    for (int y1 = 0; y1 < BLUR_SIZE; ++y1) {
                        sum += image.getRaster().getSample(x, y + y1, b);
                    }
                    result.getRaster().setSample(x, y, b, sum / BLUR_SIZE);
                }
            }
        }
        return result;
    }

    private static long calcContrast(Raster raster, int y0, int y1) {
        long result = 0;
        for (int b = 0; b < raster.getNumBands(); ++b) {
            for (int y = y0; y < y1; ++y) {
                long prev = raster.getSample(0, y, b);
                for (int x = 1; x < raster.getWidth(); ++x) {
                    long current = raster.getSample(x, y, b);
                    result += Math.abs(current - prev) > 5 ? 1 : 0;
                    prev = current;
                }
            }
        }
        return result;
    }

    private static boolean isUp(File file) throws IOException {
        BufferedImage image = new BufferedImage(IMAGE_SIZE, IMAGE_SIZE, BufferedImage.TYPE_INT_RGB);
        Graphics2D graphics = image.createGraphics();
        graphics.setRenderingHint(RenderingHints.KEY_INTERPOLATION, RenderingHints.VALUE_INTERPOLATION_BICUBIC);
        graphics.drawImage(ImageIO.read(file), 0, 0, image.getWidth(), image.getHeight(), null);
        graphics.dispose();
        image = blur(image);
        int halfHeight = image.getHeight() / 2;
        return calcContrast(image.getRaster(), 0, halfHeight) < calcContrast(image.getRaster(),
                image.getHeight() - halfHeight, image.getHeight());
    }

    public static void main(String[] args) throws IOException {
        System.out.println(isUp(new File(args[0])) ? "Upgoat" : "Downgoat");
    }
}
Sleafar
la source
Voici un lien alternatif ça marche?
Downgoat
@ Downgoat Oui, cela a fonctionné. J'ai mis à jour le score (sans compter les points bonus de votre avatar qui est reconnu correctement :).
Sleafar
38

Python 3, 91,6%

-edited avec les nouveaux cas de test

Définissez le nom de fichier sur l'image de chèvre que vous souhaitez tester. Il utilise un noyau pour rendre une image asymétrique haut / bas.J'ai essayé l'opérateur sobel, mais c'était mieux.

from PIL import Image, ImageFilter
import statistics
k=(2,2,2,0,0,0,-2,-2,-2)
filename='0.png'
im=Image.open(filename)
im=im.filter(ImageFilter.Kernel((3,3),k,1,128))
A=list(im.resize((10,10),1).getdata())
im.close()
a0=[]
aa=0
for y in range(0,len(A)):
    y=A[y]
    a0.append(y[0]+y[1]+y[2])
aa=statistics.mean(a0)
if aa<383.6974:
    print('Upgoat')
else:
    print('Downgoat')
Magenta
la source
3
+1 beau travail! Je devrais vraiment comprendre comment installer PIL sur un Mac ...
Date
J'ai ajouté un deuxième lot de cas de test . Pouvez-vous mettre à jour votre réponse en fonction de cela?
Downgoat
@Downgoat vient de le faire
Magenta
@Downgoatpip install Pillow
Assaf Lavie
16

OpenCV avec transformation de Hough, 100%

Mon idée de départ était de détecter les lignes verticales des pattes de la chèvre et de déterminer sa position verticale par rapport au corps et à l'horizon.

Il s'avère que, dans toutes les images, le sol est extrêmement bruyant, ce qui génère de nombreuses sorties de détection de bord Canny et les lignes détectées correspondantes de la transformation de Hough. Ma stratégie consistait alors à déterminer si les lignes horizontales se trouvaient dans la moitié supérieure ou inférieure de l'image, ce qui était suffisant pour résoudre le problème.

# Most of this code is from OpenCV examples
import cv2
import numpy as np

def is_upgoat(path):
    img = cv2.imread(path)
    height, width, channels = img.shape
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    edges = cv2.Canny(gray, 100, 200, apertureSize=3)

    lines = cv2.HoughLines(edges, 1, np.pi/180, 200, None, 0, 0, np.pi/2-0.5, np.pi/2+0.5)
    rho_small = 0

    for line in lines:
        rho, theta = line[0]
        a = np.cos(theta)
        b = np.sin(theta)
        x0 = a*rho
        y0 = b*rho
        x1 = int(x0 + 5000*(-b))
        y1 = int(y0 + 5000*(a))
        x2 = int(x0 - 5000*(-b))
        y2 = int(y0 - 5000*(a))

        if rho/height < 1/2: rho_small += 1
        cv2.line(img,(x1,y1),(x2,y2),(0,0,255),1, cv2.LINE_AA)

    output_dir = "output/"
    img_name = path[:-4]
    cv2.imwrite(output_dir + img_name + "img.jpg", img)
    cv2.imwrite(output_dir + img_name + "edges.jpg", edges)

    return rho_small / len(lines) < 1/2


for i in range(1, 10):
    downgoat_path = "downgoat" + str(i) + ".jpg"
    print(downgoat_path, is_upgoat(downgoat_path))

for i in range(1, 10):
    upgoat_path = "upgoat" + str(i) + ".jpg"
    print(upgoat_path, is_upgoat(upgoat_path))

Voici la fonction entière sans sortie d'images:

def is_upgoat(path):
    img = cv2.imread(path)
    height, width, channels = img.shape
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    edges = cv2.Canny(gray, 100, 200, apertureSize=3)

    lines = cv2.HoughLines(edges, 1, np.pi/180, 200, None, 0, 0, np.pi/2-0.5, np.pi/2+0.5)
    rho_small = 0

    for line in lines:
        rho, theta = line[0]
        if rho/height < 1/2: rho_small += 1

    return rho_small / len(lines) < 1/2

Bords descendants:

Bords descendants

Lignes Downgoat1:

Lignes Downgoat1

Upgoat2 bords et lignes:

Upgoat2 bords Upgoat2 lignes

La méthode a même bien fonctionné sur des images particulièrement bruyantes. Voici les arêtes et les lignes de downgoat3:

downgoat3 bords lignes downgoat3


Addenda

Il s'avère que le flou médian et le seuillage gaussien adaptatif avant que la transformation de Hough fonctionne bien mieux que la détection de bord Canny, surtout depuis que le flou médian est bon dans les zones bruyantes. Cependant, les problèmes de mon approche initiale sont immédiatement clairs: des lignes de fond bien visibles sont détectées, ainsi que le visage du bouc sur certaines images.

def is_upgoat2(path):
    img = cv2.imread(path)
    #height, width, channels = img.shape
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    gray = cv2.medianBlur(gray, 19)
    thresh = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
                                   cv2.THRESH_BINARY_INV, 11, 2)

    lines = cv2.HoughLinesP(thresh, 1, np.pi / 180, threshold=100,
                            minLineLength=50, maxLineGap=10)

    vert_y = []
    horiz_y = []
    for line in lines:
        x1, y1, x2, y2 = line[0]
        # Vertical lines
        if x1 == x2 or abs((y2-y1)/(x2-x1)) > 3:
            vert_y.append((y1+y2)/2)
            cv2.line(img, (x1, y1), (x2, y2), (0, 255, 0), 2)

        # Horizontal lines
        if x1 != x2 and abs((y2-y1)/(x2-x1)) < 1/3:
            horiz_y.append((y1+y2)/2)
            cv2.line(img, (x1, y1), (x2, y2), (0, 0, 255), 2)


    print(np.median(vert_y), np.median(horiz_y))

Voici downgoat8:

Downgoat8 Thresh downgoat8 bords

Les contours (code non illustré) détectent assez bien le bord supérieur de la chèvre (colonne vertébrale) mais ne permettent pas d'obtenir la forme complète.

contours

Recherche complémentaire: OpenCV utilise la détection d’objets basée sur les fonctionnalités Haar, qui est généralement utilisée pour des objets tels que les voitures et les visages, mais elle pourrait probablement aussi fonctionner pour les chèvres, étant donné leur forme particulière.

La reconnaissance des fonctionnalités 2D semble prometteuse (la correspondance des modèles ne fonctionnera pas à cause de la mise à l'échelle et de la rotation) mais je suis trop paresseux pour comprendre OpenCV pour C ++.

qwr
la source
10

Python 3, Numpy, Scikit, 100%

Ce code exécute un classifieur d'images formé par des chèvres sur un seul nom de fichier, en imprimant "Upgoat" ou "Downgoat". Le code lui-même est une ligne de python3, précédée d’une simple chaîne gigantesque et d’une ligne d’importation. La chaîne géante est en fait le classifieur formé par les chèvres, qui n'est pas piqué au moment de l'exécution et qui reçoit l'image d'entrée pour la classification.

Le classificateur a été créé à l’aide du système TPOT de Randal Olson et de l’équipe de l’Université de Pennsylvanie. TPOT aide à faire évoluer les pipelines de classificateur d'images d'apprentissage automatique en utilisant la programmation génétique. Fondamentalement, il utilise une sélection artificielle pour choisir divers paramètres et types de classification afin de fonctionner au mieux avec les données d'entrée que vous lui donnez. Vous n'avez donc pas besoin de beaucoup d'informations sur l'apprentissage automatique pour obtenir une configuration de pipeline assez bonne. https://github.com/EpistasisLab/tpot . TPOT fonctionne sur scikit-learn, sur INRIA et al, http://scikit-learn.org/stable/

J'ai donné à TPOT une centaine d'images de chèvres trouvées sur Internet. J'ai choisi celles qui ressemblaient relativement aux chèvres dans Test, c'est-à-dire "dans un champ", de côté, sans plus rien de plus dans l'image. La sortie de ce processus TPOT était essentiellement un objet ExtraTreesClassifier de scikit-learn. Ce classificateur d'images, après avoir été formé (ou «en forme») sur mes chèvres, a été conservé dans l'immense chaîne. La chaîne ne contient donc pas simplement du code de classificateur, mais aussi "l'empreinte" de la formation de toutes les images de chèvre sur lesquelles elle a été formée.

J'ai légèrement triché pendant l'entraînement en incluant l'image de test 'chèvre debout sur un journal' dans les images d'entraînement, mais cela fonctionne quand même assez bien avec des images génériques de chèvre dans un champ. Il semble y avoir un compromis - plus je laisse TPOT fonctionner longtemps, plus le classifieur qu'il crée est performant. Cependant, les meilleurs classificateurs semblent aussi être «plus gros» et finalement se heurter à la limite de 30 000 octets donnée par @Downgoat dans le jeu de golf. Ce programme est actuellement à environ 27ko. Veuillez noter que le "deuxième groupe" d'images de test est cassé, de même que le "lien de sauvegarde". Je ne sais donc pas comment cela se passerait. Si elles devaient être réparées, je recommencerais probablement, réexécutais TPOT et lui transmettais un tas de nouvelles images, et voyais si je pouvais créer un nouveau classifieur de moins de 30 000 octets.

Merci

pickle d'importation, bz2, base64, numpy, sys, skimage.transform, skimage.io
s = '' '
QlpoOTFBWSZTWbH8iTYAp4Z /////////////////////////////////////////////////////////////////////////////////////
OCLRpIfAbvhgIAAAAJCgAG68fDuYNrAwQbsADQAKBIJBITroq0UyRVNGVqljJVSvgAAAAEgAAAAA
AAO7AABugXamjQYyCIABQ6O7LEQ2hRwOdKSFCVuGgF1jBthaAUAAEgKGLVAAAAAKKCVFBIFEFKVE
DQNAaNPUGjTjjU000G1PU0ZaaGJoyDQaDaQxPRP0oZpNo9NRGaJtRoaYmmyammnqGAjTBNpG1Ga
mT01GRoemTFNnoRNPZCm09pmP9VVVBlIgAAAmgAAExNAaBo0A1MA0ZAADRMCZoAajBNMGjTSntAC
YJgGiYJjU0YNTTCYCYTANABMATKHInox / 7VSqoZMgGQaGRoADQaDTRo00YQaAGgAGQ000yGmjQNG
mQ00DRhNADCNAAGmTIZGgaNGmgMhoZNAZDIIp4EBNACNNemmhUjTyJ6T0h6k9qnqbTU8NCnqDaTJ
oaabTUaNqG0jIyG0T0ID1BkaGj1ABoMgGgwwxNAGhkGmTCZA0Ghk0DCKUQECYBMmIEyJhlPTU8k9
TGmpP0NNU9tRomTaU9PSep6UeIGGSGJppsU9MTKbVPyFPZMU8ET9QmmnppiJp5TT0A1PNSeJknpH
qb1T1PFGnqeqeNTSemyaT / VUEKiJAQp4JtJ6iTZNQNMgaabUBtRtTymxDUaepp6mgemp6ag9I9Ey
aaM1NGQaaDQ9TNJ6hoDag00PUaA00PUB6gNGR6jagANHqDT1DTTI9J0gKvsPxi9r9nnM1WbDVUTR
nBgijNiWaqCjE4kzhxREVREZNmqgdLCqGJUXEg0K0IUotA0AJiVHEoUpQUI0CFDQUFAlI0FUjiQc
SjQA0DRTQI0jSJRTQLSrSjUQlFBRSBSNFBQAUo0lA0CYjECNjAjiEaVChEKBKUCgxAi4gVxAA4hQ
cQABGiIMAYEDMI90oGBe6yPBxuR2XhdxeZ1XL5AOe46 / lgb3BhDEJzJA3cev7vi53o25xTVTDRTL
S1W9eT6bsd7nyJqit + oxYIxWMYiKoqLGDERRMbmDk5 / f6rkb21xwxXFwxJYkqLFNSVjGDBjFGIiE
qiASEhEiLteHuvnMwqrqQgKhgZCZiYGIVCJEec2WyYMxkzjDibGEznHXdX7PtN84todMODGGnHFxY
GsFUZxYzGSoxZjnNNLO / 3fouWnGjjcYxnGCc4xVGycVFEZjDZsNpgzOM4UxIRQSGr + hhCVYTQEJB
MhACqGoDJDAR + C + VeBCIQEqhACCRSMAEqiA0MARCEZiZkNQiKEJACuhYhx6tAQhhet2tXbimsqnn
5qIY9C5JNHDqZp2rlRGwrWGuGgdu4FIYehsHhUKrgtTZWLIJqoOGsaUi5c7iYp2n + 46rbNtk8pSy
TJoqTh822poWQW92oaGuNk4 + Qil6VnzEKp6Lla + yUQqzH9N4p / vcI1WYVfBWLk53uwVcjn / iaf1x
kZJrY15LvF3c6bDSd7rtIF / CIeJ5ySSPDS8WpbhSth1jnyu1DFRb7ulLM6NlFMEVOCorVWdxjepR
5Nc0vgBvyASUIIJt9qydSewF7mdm76qnXx7NXCsl8ZDDG2 / 7KhXbsv3S1dTtXOitVYaUPrsnj + nG
R1MPnB8p7Hvdwe4eXxf1Bf39iVuyg9r9aweH4Ht / NfXOQ4IJ + q9UqxkeHy / Br1ixpI39nqf5 / 4gm
+ LgfXIgl7f372D + vf7 / 5D + t8jLCs + H23tsPj / lnZBkV + Xn / mfuvf + 2anyF + G + bGUypcqKqpb7iCo
QlBCSaYTfNYNeoXO19viV + uYu6lckm6OXj9Tp9QzdR204Lp87r88k9ULU01rhNPleSE5XK01Nht2
wB94gHbgH5aAB / 4hTt + y3OP41ivChK2SdsxThs4cw8p2uVsN5FTvdbyyDqkHKOdv6MDXJtk + fP9U
5DFrCIhv7UQqmETgJWZWhQhDBUKlJVKRuLBari0uxZtg9q6L3K42KgbA1aXeD3ypsAhWxqK9TK59
zuFDq1sYAWeBrNuydhlVPhwDoa7rs0xZkRXtSwuyYXtqIGsoVv3eglDKBjICrev + t / pew8 // j513
S4f9JIPxCWiAoDeb + iULXivpuL37uuEfiPr764B8OuKs1SrGVPUwelyHbu0yufCuMGLcP / 3fWryq
1UsZhJYJVQkrsEZBqJpkqWQiaYqbW9MsHsp75bTgxTniy1cdasS2yU3GLG1jf1ajXwKd + 5HugAoU
tkoFOFTCSlQpUQxsyVjWZPGsCg9gt9j818V6Kvl7v5rK1tfoqfGfF1VAAENVQVVB + TUgAKqgAArd
D3XFc7OPq9D / bjG5yjUJeo + UtdmF4WweIIIipSUqVK2ISSVr93 + lkXLVyElqLZPL12cp3sc1CkPL
5IwHHuctF9lda56rrWDJy / ueRIKFF / fVB + EAAlCWZzg3ywLIOUexFPhVz68zMJ9jK2cpO2Kkma3p
StTr71R0nR / Gqfiqg8EojIZ3LNE7UrqlPVIysrlogNqiJzimFb6yLlGnVjHz2EdpNV6XZ8iv7IdT
nN0ut93cJpaqV0cEixL2TzSPqmoXvqB6IKDm + qmocLKnh2CwwsyqsMHtlV2 + rqNzX3nVoN0Cg6vL
U2OQyZ + xMs / gMc8yPKp5AIPqjjxNohmUc6ulA8IbleVQ2twH / Qc + H3QuickwweIdinUphR6cPtB8o
K8g / jbgfO3A9NhBQDKIg5IFDqBF2Yg / kQT0lA9NUPUVfVEfWEfpiJ + hQ2IB0oDtETMCZdHXCfrQN
qrthLhD0RNcJ6Y9EulXUgXS + u3LqAPVXav7EuHVO3DzA3D5IeUZxJ4DyIIPZ5HqdwIIAjH3M3O7T
zfUe5873xTd7r3pwJvknerhHzvPn6vzoOpfBAxna5nUVkZ3qsbqsQFQxLQ0IOKkjliCAI5znlbm5
ub29vY6oAAAAAAAAAAAAAAqqqgAAAAAAAAAAqqqtGpqaM + fXWvZtXPp19ObTpWRyVSVzSaTnSZ
ISFlhCDkJ0WkkILE5KpK5pNJzpMkIm96uSToJKUXRg975M0XsJJLLBlWMGQ5RR0nKkFlFyRjJ
ISi6MHvfJmi5VhBpOdBYMqxgyHKKOk5QEVdE0FESD4xMmcIxOCC5hcb0F7mAXSUBk6EEkTEcoC8E
QpGkCSBCaqzovVoRckouU1WMZM95vNpRIYxVQaAgxG50kKDifCRxkiRWKxU3szGLmZHqkShKT2Fo
SIIujEYQg54EMjYyhJ5RKKM2hqbDJmxkz60YxYmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAVVVVVVVVVVVVVVVVVVVVVVVVVYYAAAAA
AAAAAAAAADGQAFVVVYAAAAAAAAAAAAABVVQAAAAAAAAAAAAAAAGAAJMYxjGMYxjGAAAAAAAAAAAAAqqqxxl
yZAAYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABVVVVVVVVVVVVVVVVVV
VAAAAAAAAAAAAVAVVVVVaNXYZ9XJsNOhzoPjATZ7gjJHGZqZvwwNCNiA3ON7mg8lirSKUQUpMTI0ZQ
NxorCSQKMFRGdFjaEZPhGEoxlKUgAAAAAAAAAAAACqqggAAAAAAAAAAAAAAAMJNnzZtbNq6 + jLp12r
r2pm17IyPWUke6TzZ7lg4jfIoCcieoRCAEiwesXIqSVnqmaamnS1s + tra2wz6NGfV0yy5cmXV058
2tp06cYYAAAAAAAAAAAAAAAAAAAAAAAAxjGMYxjGMwwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqqqqq
qqqqqqqqqqsqcgAMAAAAAAAAAAAAAAAAAAAAAAAAAAqqqqqqqqqqAAAAAAAAAAAAAAAAkykyTcm5
UABaQRUCkFAEpBFgkAQi / yAIiyQorG8kZN9kMZMAVA1v18dKaO4pB0771qIqBiQVUIgVU / 3hAHaM
ggEApEkkXUCueVjqIqwv0JBQVdUQaqXTh01SUQosK + NiU2qmwMHABALMSQ + BUXW + 7Xr09DlfqrdX
/ 939Xyc9YbJ / GjfTHd3mflYe8dzKSXup + r / HbwMZ8arVvHPdveWSm6FplrPLVmr2S843G4vE5O65
PJ4bC8DU5Luf + 6ve / Xp0 / g6un0Hj / Ty0fn2O99Haarbd32V / Dny / Qc5sNf / zt7 + dwOVu9 / 5Os2eg
0vXc5p9t4dmD1nVd / lairac3oOe0vZ9V + fSdb + LsOvxsPp9V1Gn8DR6 / Y / 7 / prP + 7La38WU / 06fv
fB8TVaynfbXa6qUu6xdNqP7 + FLY62em1Wnydnr9r3vjbDxtXkWeFrtT / nW63X6zw / E12s1 + Vsrk /
H2 + P5HkY97JyLvk5F6ud9cu5OTj3NtSvbUrsvL1VdclKMCEI / kz + htbPr46uEYwjGMeEz24bnash
zXEx3HMzQQZAQYBB9WpqbuxABZyiDy5zuTwGgskeZ3vWc + ABzZFn1QCDPvZ0J96TVM1ENETFMVSQ
UxNFVVRK + 690eoABfv372329iVOAmoTnKmXpwCVlmZmoABwwAAAORAAzRmgM6AZ85kAc2A6TpQ0Q
AAAClc5KO1AHe90CScngj / ABrQBsQABkXAGUWSrUqVKl9 / KLRiBAYDByIgJv / fkVEE72ARUN6QQT
av4jrx7Z + ANFQeu4oaOQ2IIM36MBCY6 + yU8Yn97qjqIuOZ + 9iKAou4t0QKchQhdMMYRhCMLUcv + i
EQABvlVN9lZZYknOaiSc9 / oX6WU4KgZgAAAAAAAOS + kDkWdAOdAAwgB98aQAAB + 0dmnKykqA7gA7
w7yc1kqA8EDXNWbB4oANoeQLuMAF9XIowfMQzlqMIWrUYxtWoQjCNq1CEIxtWoQEKRQoVCgAKBEp
QKBWke4kA9PC9hAIHEkBD / IUkD2TCAb / pcCjmkJd2AO / lFXsIR35QfWwi + hkF9fKi9rCIie4gRfE
ym3CH3EHl4A9hKhxJ / BgXBwisStCQLDeYA3MB6cvZLeLKyyysFJWKUJMzOQHtgAA4gA + UAHIB9EA
M3ywBy + eAAwh0AA6MAAaU6tpQkUTAAArsropQAAA14AAMYAcbi0uNS49KlS + / Qygn9okGIUPw6YE
HpA8SfNPy / H4T7sxEA7lBBAPAPIIKtIVMa6caqJDD5OfnbqJb71tVM6zwsIQAUgIwjvsAywAMqeVX
ve / 3pznOycydJCjgZyTUAAAAA + gD6gDlDlA5YDPAHOgAYTQDog6M0QBpANIB1z9llcp0nR2juO5A
AqropQAANca4P / DDADGACtWDBhnIQjyV3R / 66ny2rhCMIQh7rcOMh + Hynd5yMPK5XGdbifY0PcR3
GEI6fh9yjloxhCFqEIQhDeoQAD0YJX8q / evb4nOY3dZSk5qMzSmYnOgAADh3CgOJAA + eAcnyYAA5
gAz4wgAHSgNH1BogAFlcp9lMHagAWJaidO + AAAAAAMYACsGBCHpIWoQhpIRhDP6HjctrOQ4o6Lzb
P2RpiYdZjQD626Ff / PHsBn37P5PufLqbcUiBgCMIb3CAG6gC / VVOq9esSkUoSpIcDKyb3GZoAAAA
cYA4sA44MAAMAGdObAwQYQAH4OnAA6sdWDsHX35Uk7GgAAJ0lJRqQAAAAABdumMZDbAKxRgxhnIQj
nd0ydDouH8vuGWtQhGEI6jwOK7n50c9L + 2b4 / dPObGELUIbrGEY2oxhCEN5iPNAD1QXr053vTWWJ
SoUskoK67KSAcGOCe + AA + IAAAAPrAADmgAMIB + M6I6YAAdUAdZRKnYzoDthpgFKWUkoAAAAABcu4
wAFaQwOWhCEYQjajGHm / S8dGMMH4cYwjEqlQCFz / 4edmzVADd7iqXwZpGvJyp7vSne5fDfw4NF8z
DLQjGELUIwjHeYwAADb0pelJOe7ybtQr3idApNwGYAAAAAfHAAAABmwcwcyHMgMIHPujB + UAAaUA
TlNKgAfy0wEpf1SpQAAB4oABjDGAVF9WKMCHFWoRhuXv7UIxhCEPHtRhCEYww2BF2WXkBAfUgEZ
IrLoyRRB3bAo6GrNSCDMZkPwHld4ZXqqfWZHDB1X8PQ4ftgUL2AQAJykYAAZYWWTy9 / fJSpOc92m
KTpve9Ue0nOlFAAOGAcJxYAA4180ADNgcqAc0ADnsIAB0wAdSAAT / dZOUw7XtjtwacUknKYAAANg
AAMYAOLS43x0qVKl2ZnoEoqc2QDW8f + sTtv / A1AIMUSdJOliTgaTCVQyOZxmCx6B7fdTji1wIOcL
QRhAMA0qVKupUqVOAX / V36qqqUsnPelCuzfqTy4lKlJ0ODAAAAAAAAAAfXA5MAwQAMJz4HQh0gAAAC
yVkqKABpgJqamlGpAADXA8YAAxjyQF9WKMCDkBWBo / f3nATMdNqPaFDUAg3zQSIg + lM20pcyohl9
R0H1pgoVnawZP7O20Wvxf2LML7Co6hNxCoxEEREIRjG1ahHfoQAUpSlKZErMmyuuVlcrLLK8zfvV
11VZV / 2d + / Vl6qqqvd5iqqqqqqrqqqqqqqqqqqqqqqqqqqqqqqqqqqqypyc1k5OTkfLyMjIyMfNY
/ KY + Pj / au3bt27dzdy5cuXLlzBuXLly5z9y5cuXLmguXLly5tOh2nRbTabLF / Nh7PF6XF0eLi4uL
i4mJiYmJiYlvY4eHsuuw7du3bt27du3bt2 + 3t27du3b4HA4HA4HA4HAu9rd3d3tLu7u7u7u7u7v2N7
7G93u93v1 + rB5b7eYRBmhGtRBsKy / GX7nOB1 / E3 / qXrb / 3FEEsgr3NOugQYgYIUoKUpDoMnMf9JD
lIjzOcRB8V0nUZ / J2IjPhEewewNb0JbaLYXfo9aPzTK2tiN5ALOEUiEbNlrUDRlB1MS + eEEA + BDJZ
+ PbCQi4er6zV6K2iiCwOAQHKAQEIQIgsK8HQmk + 3XIg4AbHDyyj2C7CQc / V3ix6TAb7qDRb / pOt1
ebs0bSBiBYgWQEG0bTBQpV + hi7qnVA6OEHS20 / p / 23o0fEmnxQ1qhXkkrw1g1sHjQFrLvb + iAWn
lK9nsvYQQqUWDrj30rLLFl85s4pl / CToEB2gAIQS7ZrwaSB08E27237snaWSIO7jXauo4q + b4OeE
KpUKxq14UISbjbs2RBAPUU1ezYCbpVcJlh3K9CL7 + BIebaJl1OUvpTI + aCSVpzU + Il8r4GQDpJoG
gGgR2en5fPQIPnu4x7XtkzByrR1QKTpsdMNCQYt0AaIlc2aEEAs + qCTtZfBwYICmu4fpDGr2Hjae
psCC2AKD6apD39bTAGwy + BZPQCAWOGWUaOFSbfCbMAyqoOAQQ6SDoATyAMWOzrG0hbHBBALXsyTC
ZJA53b9jyNZQ5HH2ZGk / 13f / C + I / ZDte08YgB0kqUgG7pXT1ABAMX41Lbt4d1gi3BVNUKwAEJgH
cMJzQVfUq / x8 + DBFgv12VXO1Fpoq5i7xXVgVAAuQC4o11H6opZ07GzB1kExvmeWckaqbkCRU1iJf
Z9gDVniZ8XUg + zZ2lCTCU5qcdLqgrZ84SqB + QwNCdQVw8ADECL + / t8zQ5LrNT52orqvD4m6lPzd /
YyoxYg4ob1W / JpNtsPQ0XLzgZ0JpghiJlAIcxjlbbdBBrtkMjU5 + BG6 / xqfFgvYmQAvbmxoIE / cd
BsOq6 / jpUl4ocf6meW7vnUb4YhSRX4MLMYHhJd9wgEGFLb6HBn4AED58IDj9n4vX7m2oFVibn7IE
/ RTRnVikkSXY2vf / PBBqNDu / IurbDfSqtJv8Jlu9zNdPEr / OYWQgrECDIzfa7rEYsmcgAJgIADr6
a0BBzs9qX3KO1uM9LgaY4 ++ vIxTUXMFjPWNf / n38HGXqT338kv9mub5gWYIhjiEEDd9VS / QgBAP +
UaOqjT0PBqd3W1BPQqlPNiXksoF4rxC9wqpwa6mmggb53q4Krla2yg58EZ5RfgS1wDIgOADyo6q3
fostZ4HbsAAgHi0VzeKH / GVqr7zs36oA4UJLASwUkjJSX9EH0vVrr44QQDzftzQzEGxjeY48XN7Ty
9eIT2vRrwdhb1lbJljEebtaNNsuay9FQ0NROIeNOzwh5q6ryfpvXeFFDpIApEPrrapghYiEFM32
n1P8enSqlVMLPwez / + 7nkJ4qn04P7wd / 3UgIYz4JAQ9LZyKDz2ckVXrtJc3PJ23yu2 / pRB / VFKF /
PAnQeXIIa + BU2EddC7OBF4kAOGhK3F5nm8SACAVVVvxO7 + WQArXQrfXwkJA1bgDqrQsJlycegjze
PWc8RzzpycDyyCAe9lBwpbONqF3TcfVbssZBWPyz8cvfwXwKSAUhiQm7lasRaEEUiBQv4CRCK4r7
0 / ZmwmS5Ks77D9zvJPwJPrQK5P7QZpAF4c2zheVZwLVWQE4ke22p / W0HA3mMM + PEpCsluAVqaYux
hkHopROiQKJgKQH6Q5nUHhx7f4fynJHZ7fv + NYbllgCn / cNUv7bFd8 + qFgeAvwB ++ ga / JVNTGN53
IB4WRpQQoiVv4Q60XPHXjmIfMQdt67x / xno + j3jw8oPPoFGJxUoBg3qTG2R3KnRoEz3EJBVwrSlW
MSllN0Ngn4X88TZSSn4yioJoJgwC9nXql7l68n50Vw3ZeHSYAIB6GcHhVyOzlclfgFIXgBwAUD0Y
qE + y4AQ98kOYiVVDEicHJ7vf + f / 6Pgus8Aem43Udv3PNO76n0KYLyZ307TUBna8nIWynQx2oTMU2
dsCW8ItuBERCQQo2 + uuJ1R6nNjqxu / 4477i1foYXNYL16lbIPJgNFAcpJfRZqXv1an470C2sEQpa
qB78062iGy5rWmC7XNTOQxcOtlMlzPAzFbXONFWMAeiwgicygj / F8w / kEh / BCEBCCQe46qXWreFI
F9y41ErQyV + zGVIHdiQ8IdgeFAA0ENQYGGVvxJAfiSfaWnSggzfIveHGXibYPW7g3HaVONwuUpvX
+ TONfVrNC0QkhtuZpcGy9yii1YMQLNs9b6FS / J6TlPa2Vz8HueJYtMxYgxlY / Mxw9k5IIDkEFxsu
5pMlm13gS5cnrZoLfi4MJDy7AhQA7ANx / 1w4ckJIIn1dz86i4qNLZVG313vETqtgCatnCWfqa3 / V
aiFaoGPVKE5fBeh5cXum + GP0Xfqs7d84PpzfD + lVlIIQQECDECDA + 1 + DmPqshl7IBv4LPAN9U4Hv7
kyOuussZHkeXSmLJbEG8AN4AdTJ8SHas8Lh2FO7IK8BfiEAB4gvFuCYAAMyCKwAWXxhlysSbKCqO
X5oEwpblsAcWnxmbYkhsCF0JLXTv6LC + L1sfO1IamFQALWhg0BKtHIG / pvBjlrCol / RGt72YlSDM
KgEqBPTxHR / 7gUAYIwM0ur / 11xYqAPq2AWj9vikGf8kgnEZfBftker7vGEYN54bYwDwMwPr / tvqe
78KJRD / L9r / 4vUG + s7zBC + skgZJj9JWq / MFXMd + t6sAYegSGJ / eoe4SFUEahIxBDBTE1BCJREQVU
U0UjMRUVIxMyITQjQkMTAyRFUQSoRUTVDUSECFCWoyBFIyERREIlav87qAiIuAhiVRkggn2JmQqC
mggioJIIKaihqQIgCBoq1EiKJoimJCBiaiKiImZGoCAlsO4Q4pEERVJBBCI / bsYKjMokiGDVMgMx
EqsbGCiCqZqBiZMpmSEjFX9 + Yie5UICUkMTNDEEUEGpUQkQkU0QCIiQqs6pvC42JIkSiuAMLIh7h
cZKxi5zGRmbjBlfkNThAh3PMLQJO0kJFVCY1ZjISNVMFUb45gBSU0FGZ7GfzasbgNWogMLEOxBiA
3rG1wILGbnCpq4xVjARnwHiDkCwWAfxaEYGKrctSJxcgkTHw352YiOM7UEkEEZEV5xcYEqgL4vLJ
lQfG5rWIQgJDVv4WZ0YH / UOBKMg1ICQJ0ScqApiagQi9QwyOy2OOgHJgSAiipcTFMahJWqVEPAy
OgyCCIMwImrAQMwd8AsnblR6VGR1PQzA1mxoQ1UpndpufbhB + JREmjK + ZhXCwnQCQUzyo + ux9AvZ
UqRpnWxAQiNeRA4T0JrBB3hgs0JhpI3389AitYytiEql9bdeYIA32QwUAiJqUTuVAMSFRW5ArSph
X2wycKGIQL + 9E0FImZkAju3G9BgTj58nLbRhhLLaavCpqgl1lhwyHDMQ6IdqAJEDXb2mC1DAiQwu
QgG3tDdTjjq2TxeQQ497iMECvvmdg9JZvQQiuupKGgwcAkAiQhiRAICJkBCAliRoQXZi + 4bX6Qqf
54BVUVW3svV1AAGoDVQahr75ooWMQGImINv4HV + WYAztv1YFAagjjqoR7LekYVBEc / tyMXCATHiN
QB24EH3ogGK4HUFw1QCh9l + zAG4DhDKul9eOWUwAFzoYVdFIAuEKpeV2N0bXVBO0 / pp8g6 + hDST9
JX3d6Pdlm89PwsACoAq / D8FdDO3hpyAAAKkpodVQCtghHXJ2RErK5wbs9XElajJiizuE85V + ZXLd
Pyvy8xJOupddZ5jUTHTGEXWTNrTVo1k / u32XuDO8fpJRFzX2UKHpyclub3QmrRtnLDzSjvgEvvB7
q4UBLarBSmLSu2vTbrO + ZSbdTc6xrbEwwt8 / 5hTso2Ra / 0agqAKv3nwdsPoXaRpJHO045EGgd72y
WrVszfzjOcVkkDCwEO7nv2gYPreIIBQhFovlA5DCNUYscEiTK / 4V0YQc4zKxElKSGrEyJBRhK
PAJTLfnOXThkGrlpBRKpW / L4WpuVL56myXL4dfGxr + vy6pUp5lp8s1 / 1ouKjtqrb + 04ioBfm1QTY
SIn9ANIpl1WXToEahjlGBu / sZIfKlLC8pB0gZbEbvzUFDMBqCIh / tfpxRwgnx1 / 0uHx7RPieotiQ
BYWISqFAQhLiZnVVycI8REQ0Hj7lTBFPuQjs + e96w9Ab5IiX38YHg / 3D50OJjzJLSQ7bunfZDrrG
EZn35Y4fYQOEYd1c5j2D4nxPMEKJfASSWsDZqBSRwqEYNCt + 6A3vDCJarMOHPPGt513RieQyBFjJ
Fu8a7CsC / pILluBQEK4XWubGgI + Wdp5FnlHAGiMrrzB4ZyE2tsGErymPlkG .Dldc1J56XsL3uXUGN
4DjdYteEsK6aeWGMHQvhmLq81RyULQkPDuY7gaQmBYkohgb3TU8TrR5gannWpg + WTydjeeD3uUNA
2z63a3xxMLTHLNaIGAYkiPGHTIkiuaTyjnXCZcOvY7rJsRK / kyXWF1YxE63khaonFdmIOIZCBo1S
8dCHtB / bqoGF12thHvgxOedj4ypXY29TNWidorby8bsa3O2fAMszfcuZdsYrMudt7PnuznKXFGfC
bs9lNAERIRIXFE0ZCnSD3VOodpzSGr3hO1zz2dgHNH8x1rpXbTOd4vwiltm22MIboTvvrrnaMgO2
aUPDivhZZyHjo1YkPjedqKEBPwIL1YXRJUN4K3AIa7Q1hIQhJ8H0mrnO751mGYvCvCzd2vFl2Kdz
OdQLw7uFY8JdlkTe6SrYxCCC0N + RR6sLKYFQXlbMGu3PePLKtVuWMIndDyJhyYbAjMxJPCltbXQ
dCxqKt047xOWRCvM3MGssh3L0aVfDoQa9SUWfXJ2 + tB1ijxCMXFzN68Awy42A7yi6e / I33xXYdoT
Cum8d6bbsI9eT8sLTdZwmoT4dvbzhMccnztjnbArbS28KEPdhw2LxfhaIiQwEdrrGa23skoq + b6x
yQCRmx8d4NB4u7B3d + 1Ad2dt4TgUDHclmXZmD548bQgbpOTc + h89SFWFt + / dEzQZAb3K6b4FHr0P
SvWlxxUdgdRuFlIZb511xtsmHbaRIXHDLYa6LDjd2dd + XDnae3fkT + RhowXYlgvFLlArArdxprHB
2ei2bilLTbbjnrpPpjG4u87QzjfHDG2PQ4c + UoQoPQi1GAhYtCooqWg + D6NHfW98ZvmkXajLdOVL
OaV6zv3Yd + UOljp7RCtbu + lqpqTkvZOe8quNevfvRQr28tcNtN3djfIsNor9N9rZwMCI4AwwZY3r
Q91OyY6Q0jpdcnJHNGg3wySm / Lpkcl48Uvzz23RAN6SUkZt / CCivGGMsQy3pe7grdOzhlr06hTIL
77MKXMyjnhJCpHpf0w1vhmIcRDqWPZgZpHY8hztyj35vV2lIQA6cuV1fHcdfO7ud3c9m8Oeuwhll
iFMK92ZjaMsN3TVq / G + zXvyhy3JyyyfQuVu2Y5gelrdnZ3T7Z + Pbj02HeA8dy6lvQXj1319C0s0G
zbp26Wd81DXlZ5Y7dl5Wk / p0xw5deRdeuXVvBQ7bKWDTinWO ++ za9Dl1UuJXX + V6 + RKp7Bfv58pv
7szEu293TG0Lru9g0jod / fLWW1A403 + VuWVfHw0vs6FXdDJewpvINawyIumNm3b3ZO6eWG0xo1XE
cJUttx1xnV07u0516EASDuy4aEZdfJsqePd437m32UG / y7e6mW7yV7hDndG5PDC8e3m2GEOImshk
XECUiDG7xwR1pC / ciBt3gQPtrMmIQ7xRKGCJWOC3YQCrGON3BFqQEAicIEIlzgdVVBBVrmgd4xAR
AOpkqZKQphqvHn5Bu2ivV6CMZaMmkoGXCUFcRDC3sK5VM2QUZLe5VxQLXLXTu5W2B4Bj4XePi01m
5xwxtdx4U8nrloM8OnjTyV9T35WDaCCGu7jUmYhk5SZccUDIuN17rXB + c + VqCqqoB93 / 0 + AXy4cx
I4e + q + Rd + K30f + 95q4G + nT4Rv2MSf5wwSskQvMBCgTSN4jJ80RzxSTKq1NU5AFVpsg4AW / CmH1Re
pH1Pn + flms88wr + LKrN + 5N8RQXZfBc / TxbCjqbDwu3S2f3kk7C12cg / Cep4AOctOLvDbOWWGeMx7
LoaV2y1gWvwu63hPC6q4moW6XZ1nyWwB7wZLgy3EDoXaaJYHOuxlwvcm6utwbo9q8DXKOG22mG
T09MXGGAxGkGt5ZzkRPtZTqhMYNi6l9j5rW / ohKV1dU3mteKvfSyL3uC8mihsFDw1jCt9bHS5ZQa
VIM05IlNE4ts2rGNhrpaYNzWnPme784eXaqimogkoiA + yxCQQwwGC / N32IVAM87DPdj + NQHqb3XH
MW + GtR3ZimnCBDwLaQX93rD5D6Pw4spVuZ9JRMjI6vQH0SE0jBgdWEHClL7KNYVAQYm0XXUBozO4
mthCt0gUb7K4vrlUpkjr / isfW5TseFDnDKusXXndg6ulr2yuvtJ5MkBrxMKWmN1uRWDgqnWs8mxM
67xWEqQmWSTuD5b / OH8o / eff + 7T / 39M37r + R5ZYZ5es29pvL0vZ7ezGAxGQze04l6pvaAIfElD1j
uyCH7BJW + ld3zg5AvvlZ4z + D9K64KWyiVUyrs0xR3pejvdT1tL7vah6PmZNWILx3wpnT2J2 + w9o9
9fCuoRHQO0QLlG5 / peu1W1 + 3aXxkPXmHfam6KyERpdVrPu5pnGHOVOc3WcQgcPaNzxtyaPPLKTht
7DHvt9q0ekL9 + WEluHldE34YQEFrKwd2PY1dpTRXuZAWFY9L8MOodeuGD91x19mmWSdmA8DDQYZZ
5SVe / U4Qz7cGvBwR8Onst + nLN9d2yVrySLwjTfAE4XUSWoakBBkcOFRabcn6x4dkVtBu09nsG / fo
wdk6w5YLFCjQzPZd + qZ4boVhDVya8A7t177LqyDwxCN9cd / dHbnJ2kHEG98rUjEIxg / tEQELsG7s
tqXWlZrCZSxIFvdDZLtMjK6ImxEd4V5IVb9VfKb8uV7WcqBdXMRWI5b3cd1RMN + AaYsFEbMJQzzW
0XjyZ4ZZynCyOGN3s / a + Ol1WQ7nVrJenDHnqQW5ZGFw0AZC6unfWLmJswO21wZFFdXzE9drW2XeL
+ 3x9rupyyfQLsDCg4vv7e7Ddm + jm4Yr3Z4xjwXE3jxBxEOqB6X0HU9SRUtBRRLHUtShCEBAQQIVI2
HnL8NMveS9WDDgYzXXahUuBzXMAgkaFrxPU7dAIQCKmanmTNUEd + POeU5vi9BQ8F8dwczygPKPI3
k97ou + 81vojxP1F0z14zxt15v0sO7fY7PDVVUDAwMDAwMDAwMDAwMDAykpl56wiDx + X7nyOu / w87
VVRUM1U1BcIYqqpYjnFAdIO8 ++ 9Z + 18123c9z4ncBB5KCebkR / F9t93ke68F4N5YPxPrNOXzAgqK
IkgOyEIQgoQ4 + Ecqf7fxiQMzG4Dzq + Tc15Pv8WfiwVYdh2AY / Eu3ZEEQREMFlDDBEEctvdqXny + h
7vHA3fh4vt8xfP8ePyd5LynAFJ + 3Ptf8e9 + S53hiKGmeFogi4N7lelx3fFP1fQXfeclgOhp + L3qf
LPR3UIgwiDUtmDYZbbuXRBlskgmkgpuAigqeg4x79wc76P5f1Hq / bPZHv5zz9fu + 0yY8N0fTgekP
CPCnCegGfRS + NOdThqp4QiqIh5MkgA2srhW8DlKNBIAOIHLdehZ1rhPaf86uqfIIdkjao ++ JGo9T
w86Q0VNwuIOHhUB8Ry / M9Z + Aes / j1 + UjkpzxyapKT / XCGk + p38OyE46gPHBKFWigCuPMZT2NyOQo
D0g + i0R + w6YMHnJez6v2mTvUkcfAHuwFa1AQEhvRgwP0cDQZiTyfuZR0ZzJazX8HT + o + d2HEQEHl
dD8wgg + V8C8JhMUV5CznBU0kSTFERRQVZcOJiimqZrOcll0AQfTfyZ77AIPSgg752NKA73Ve41QQ
c7pv0hiRG0RBwq9jnAxxrY9SzghQwKEKGOIihhcojKLDJUWG9PbyPgpTThagHYQEaUAgG1dSTs +
oXMbdx8Plo4sCrEWA8F9QQO8geXGDtv7l0hCCEIQuceSfAsjITnK8GtEtmNfDVrtswvLoA3oggGy
AEAtnDgBAPbysjLWUGRMP39lpcPFNubLXsAjCseDiKeGPHtSnG1B02A3FnzXY27bbRFwFyfBj8 + R
fuwrJsqIOYmIgzgQZgIOB + LqPDsew8DsvYy3 / tWhPG1B6P59leYICPhlNfSOMAw5u1vbjyyOPOPdq
Grwf9m8LwA7VLERweIe1VIJJJppJpHBWo / uFtYQofc580Z / baLY / rcbfloWBaeQgga0RwJdh2h2
kh2hJMJ9BuuswPpY6f9sJKTg + dtQrAXANw5QCE95VQbSHDlyhDlJCaSSSYSQhdfEO0R + 71MVS0H1
fr0Iq8eT7dnneHUdxet // 3FjLpVfxuPA5vK6V66FHLYm / EAkgC9y12MngqL8pCfqfWqrN7gVMopA
Ktl7KyD + VWq1XQkhAq6E00wkEk0ZQ4WN8 + x7qsxHnhJ3HOftGUU00FkFk7wUhCp38yurSK + vlliX
KTHkDTt6gAHL4zVXzzuAZrZdF3fi7g8wAOq0IcQchff83wLVvY7OEtFGVkx / y73fCdEl8lkllliG
X5vZ / cKi932 + qA47TNANYKwHsxv1 / CrdJ4GU84VkMQH6ZRfkAiuqXpKo2B8E0LUFD + ECeVAMfd2U
lGnUr1SN96bNl2RIKsi5Vv8qKk65ZaTEWYHdMJz8GQMADTIBsOtgYFCAEF / wFR2NE1YzWGjZvIYm
JmwN3tt9sgI1 + CA93wQhG316TjKJdbFQD1QruumCcXb / 1T89JcWGYUqGC1vWFPOY2VNL + VnGUaxe
qU1ZldElC24hK / Zlr / kn68N99aonkCAc5kIDFRg / u3y5Ca0lAKQEBg0EjitScs3s9UWFaODgGFoQ
SoAYAUyD60EK6hyVeJV2nXubIAQC2rcrXMJgO7Wrzp2jpMkUEn21JIUvACkOwhpC + Cj37Cr7ndLb
VyHWC2rebx97BJWkOSHJFzQTpnLpSN1uL3qpGRkJvFEgA6 / 0UlFtKy9MbwFF9Dch6Cgh4PkCgEJH
Nb / 8mNdfaF3vfr7au3g2e9QY / ZvaEXsTXoqrr6Ki8AKcZQefTZ7cbZoAF30kOXAyCmFuIwF4UdLz
0wdAG + BTCHux7Zn0gDjB2MdwuKkEwkFDm7BQVG9SwqBBobKAEIC2 / qAkLTiVLH2CGVhR6w7 / zz2G
4qJvs / 4A8vRolTkZVBMIEHk / 0DY7B9m1HviOXEWHb1g0gDX9c4k1IQgnCpZb7goDH + EsATHHfW5r
LbGMAWAUPpdrgI6VRESgUKyE5IhMCUSAXF0OPutXyU / nldne719lra1OAJrDNoAcxAbsbiGwnR87
b212K + 23VUvGA31TynD + GeTAQd57WVlBBwfMfH2G9vVKnFU8bad5XlBJJEkiFq7dOqXbc5 + hUgkk
Yaa9Fz1zAwu94 + Q99j5oAB5qtyAfmp7WcjfbM6KL1gjHoSxkv5u99UuF6vpKFrj1olNXufcCSOvh
fd2xlKG / 7XF43ZAvvtmmwMSQEIN5zZVXBSEhR0z6p1kwQQIlMXAxuO6 + Sz0KSzlMz5WwmOP + 5Kui
qyT4ndILsW9CQYQcAodKQlQArUr + ssfHwtTCpILqqo / RgAn + lIAD9mt / zGlUfQ + JjFIiPvvA + ZQBp
NWASGpwEHoHCMCERNb2spMiGGdf5lPB2LP76yDuSA / RcQA3CtAvgCE0AXFBfnEx / JLzDNpVN + Oeh
RDKQomGH8ZM0NuzZmn79Hfc4YPup93UHasgv4QggaJHOnEwiDfAQG9PJ / HYVl1QopWPXywz / U9S
rhfVhWVmAAfiHRe7oEgno + nUBx0EdXoiDg64EG / DBBsgg9aCDM6Oqmz0QfL8dEG6FBrs0iDwuvBB
7bTyRdep5XiYJve8Jn9x2GM6qbeJfw0cfXRFa2WDuk8 / cby9fjROB5FpqFykYm1PLvHxr9qmCrlQ
3MSgOa1zfHbyfH4DKpqUvbDard1K03Worpp08ulIiD8kBJ + xixlpbofFrr5GvR995mAmIg7LlEQa
3spgCDg7 + CD + JEG9DhQQdgIPiwQfIQIPnbrfHZznOc5znOc5znOcg5ByDkHIOQcg5ByDkHIOQcg5
ByDkHIOQcg5ByDkHIOQcg5ByDKpKpKpKpKpKpogBBm6P8NdyPJefd6HrvsfT2 / rcLO5bK + Fd / 6 + LKK
KpzXN8vf85ofW7rtf77ynFU + GBH + cLn4VHj6WRcDVAg1NyoDLWqA / xzf0dnh9zw9DlqpVTZe1pvE
mKqfhKA + RUB + LOQedMIYxhoxjAYgxJdnGCsYxiMlmDFioJrGMNUUZYxeY8t57CYorx1nOCppIkm
KIiigqy4cTFFNUzWc5LLuin9UAB + PfrIJy6Pr + eJnNDmJ6W2MzCjO6nVR5IAKGIFqf5QCt0NykAp
yABANmbqCWA9SHG3q / fyKs8ArifkXP + VZ0r6UUrSp1SWcynqM3JfGGb + TCzdL5gKXUGufguANt9v
Ggo1uIp7qnq8YPU1TcaHnc60 / WXABx + o3NBl6vpnESB7Qe3arD7KR7GaKE0 / 6fCWKsuwc + gHKXeR
4VsFtjLcunY8sAnADS2SRNmAretAvcMkVr2Schn81VtvUD / snTAHjMfR7ALTtdjoLsSwiQDcVyUB
AkPgLWrSIdgKC8A5oVqH / dhxxcHj2dYznw2OcwKpyAXkyo8wkxm6GWybIiwjlYlJ8WGtsjSTLmfQ
YoltFrJy4WhtlrPd0fJ + 5RV7zyAmXXmQBz0Eb4IGo4j + HFyuxC5hmA + Lp7XGM6VBwKRtqmGZKoL8
Q + g1DSBrpMd / IFp + MvHBZ + JBE6kC6ANXFK2cfW8wgD0q5KxwFQVFWgB / mQaMAd56DKEBg3yHHvMD
hOJemYWGWffGSSokFQhNBj6gfMGpzy9QO7zQ5a8CFA98Mv0CgfzfuHIKdPp6gAPD8ABDIPxPP997
00/1 + 7Vf0M + oxq9jy5ThAnvnJmTj + 2OYOg5CZyJE8f + 3uXucXvDP9T + SDeO + ISnbL4bpVUABUYVL
7gXNX / LoTNp / Ym9nFudlNVYiRURymZRukQUSLMrFBnwVWIkVPTq / 8u5U7jm / + IbMP2rfw3WSe55f
07XWWsziJFRHqfxqHNvwzZRVf3qVwc5C51vnWzfqnmasiQUz + G / fJRxMwp65aQcziraVQVB51ABt
gNsB7zG2DaA2gNsBtoG1BtQehOlzvA22DsB7TaByDxgdwHdyDsB1BgdQZoNUDbjTAzwZwM8GQG8A
zwaIN4Bmg6g7AcA4B0B1B0B0B2gdQcg5BwDug6g4B0B0BgdA25OtgO3vA7gNEGgDRBkBogzwZ4N
MDNBmg + zPBlByDqDsB0B0B2wdNQdAdAcA7oPY7QOQfqNgOwGB2G9IbAd8HdB2wdgO0DgGeDOBxBT
g1IMp86u6Alr2mBsKcGoBlBpzpeXoGzgiImdM8ryUktMDWAzweZw + DqgayrvFO1YNiDUA7QPJ0Bg
yDv8AM8aHdnQHV2gddbaBtNAdm1zITAPADug7oOwHcBwDtA7AeODwA6g6A7AcA4B0B1B0B0B2Bdg
cg5BwDuA6g4B0B0BgdAdAdwHYDmyeDOBngyA0wM8GiDTA + / OBnAzwZAcA6g7AdAdAdwHUHIOQcA7
wOoOAdAdAYHQHQHeB2A7AdQdgOAd0HYD6HcB3gdgOwHaBwDgHQHYDoDoDtg6g5ByDgHdB1BwDoDo
DA6A6A8xTqUKCmvoqUFKKilQpRUnqU6k1SapOUkUkUmKTVNpNUmqUVJyl / mKT5qminEU21MKaqd
tqphT + HYG / FV2rh21OMpUKUylBSipIpOUnKU6F9B / UDkrP6SW8gOEGEPQ6gHrR4h7AexQYQd3VOQ
Q5kCey9eYBCoBYBqCcoNtZ7 + lYPlQ5EZ0fwSB / St4j013Mj796pDwCEQBm0CAgEgpnKuxT6CMeK
kFMsHy8JQdwgqxELgrIaSywjHJLQubX1C7AyKXGirdk5H946pfTw / XYoSR63vmvLksL76P1OwACB
hBDWusoCggvyACoQSAQYV7Cw4CBAImcuMkZG4aSZTgFkAAn5LcC + a1Wyqo9CCRnc + Rc3 + qLLLcNC
uZhQbgEGoxHOdhRL8F8 / liQxLf5kmp4qe / 33a2Ifbq / iyvacKwD3hAA7GIHX6MvCCKFUwFNBw1zw
cTvqiTlOP9KfzgEArnQBgcS4FPROW2ZdJoXbJGrzV5UeSjVBoAUD6v679RAg7XKhiQOmHHRc / VE2
HDegnENsOjHiz4yDYdb3eNY + IESh7XQgJDIrVA86uvicQoRfF0tFcwWrKLp7OoFr1ihsAblmMh4p
uIrW8exXq82p07OUnfw07QdCJDy2FaHZNmQRhcreIP2XUqHdfXen8krrwwQP9yOMxwVANQC / z1vJ
IEQQGcJdetX5q2ftJ2wM9Kj + rngQmC3PhSSAEmj874BadAqcp0TGT0FW1eKpIrD1rh6p / IJJG101
lx8bL5xf6gL89IEAI4IBCSWG3OiOaUqTo3bqCg7zKA73qrQ7zbC8hH + 97gcnxYaafW7KAkLqugCA
AOkUapcHf2jLhgHHedVmxgdas8utk5eurnq4DLQm5q9Zq9R4uy5ME3AwoQJ + 6RGRCECRkJYCAgIZ
WWAkJaBBhQamA5 / H9TiredrDtvtaCZhRb2knhxvtzJ8wLQHVS5nbSXjlMCAwURQ84JAOtPEFc5vL
tA3y2anUm4 + KCWSD6Ao8fRFuTr9 + d7V1SYFXxsFzbPofblVbcAo21b3u / UfU2qy6y6f54Hk0IOq6
l + 722ZguaaRAOw7vtUyqOshz1I8bzS2O29n0Xe2YHPQYcXgIPAQAGt7kG8x7K5JoQiaRM7VI0tLv
IzZtYzZutjNm1jMDkGByGtFc9ZAdQYHUGB2bNSpoyA6gwOoMDl0JIwA6AwOgMDnQoiKwA6AwOgMD
nSCrY5AdQYHUGB1dZijADoDA6AwOmjVMYVNFIUmKQpLMidOlIlZgpOU + XtLcv + Ro9X10bv9O23QX
7SXom0IIf3783F4pv39Hd5mApYbSLiSSEgXwO2Bh / X9Klcmc4s7ur8hIODmidLHN8l2Dzm17p770
nm / v / ZeD8VVVfAxiMRiMRiMRiMSOAYBwDAOAYBwDAOAYBwDAOAYBwDAOAYBwDAOAYBwDAOAYBwDC
mFIUwpEiHp5hzUO9MUV + evADDkP70VrEkDS4YAtctpD1 / JLDtsPG0gb / UlKiuB6Lor3bc4AayABK
2H6AIMv5AEGw2nTf19GskBAMPpNPm79DmTgiArc9l7a8F5Pn0kKRAg6tAEEgJwcU0AofWwmlBCog
aSYorSvhH0eTViKn + EVEcUjVghr6SMacICSGQegFn + errwXxHkzS2eAFY + kDmfhyVyaAHfOIWON
2vIUbiBJz4GGp7J7ZmrAl + 8znekOADQSzQMmnd2djdZ2M42gxyWkpoS0Z / vz6iraIOyH / wgFImr9
HwOFslabdTMuJGdceuFXIz3k / HiqW5CEEzz + / 68Cx84flyhY57tPmrL3W6XTk + HBMuD4dNfyseDx
IEUgAJiBFRbZ6Ya4GTBJCu3aIgUNlzPNZMwD7e3doqIb0FU5NKLU36M1UcrY9Zasd000667DsA9O
2fezKtc0ACZ96QKVVd38AfCG + lH95C0jZTjIjz6LPCndEesoM8EAfJwBU3FtBf8LbLAs7jxvq8Tv
qoHj1Pae3itldbEtbHIcaQtA / T2gM7Xy / l2IIPrHIq0yFyTSFAEghN6EW32UGufZb2p5n770BUPd
gGLMAfmgBuHBIQ6QPrac9eHQrlo346lJmu412dxLYjEIJa27hVHQ5WBrsGxeZ6EW1JTf / Ds66sUn
LNwD3st9HUGCOrbltE3rSsVdTqt / 46l9lVHB9IcEhNC5jmbvWBY8 + rEt2c + Jz1c0fcK2A9FcYwTA
A33hM4C9W90n4jy9xX2gHpQRxa1Z1rQoRoUACz3TvKeTcgKk2UWvmRgkhruhdfJB1LFUmlBvONB +
ogvCBXwgvXE9OtwY00kuCfLAeAC2cHo3Sc7Wnhg3AN3 + ejuKl274 + XOx8kGQLf5 / PZW4YNShBAzn
ZvPOAUxyGtz0Xw7uwfqxzoni0IADC8UZcAGqKHfASyl0YOKxbQqmJ6qXPBKbgCBkbvJZe38D4TnS
EnhPRyyWUAAZhmLoo0RIFrPIKAeTvE4ZGApO7IHx8pmW4B0cIyysrDK9RK7ldiJ2xH + ZDOqZwrV5
IWgGf7BHacj / zjs8ZbVBy9AUjrtH9JP5V7NZBeS4AMLFxmnU / 8Pc5vhAGd2F5ye7J4uNqoBwjEtg
DyjMXm4fg1m / FN2ThVG0YUeHwfbViOzBSZFVGnmIt6cOggOX3cQ / XPHXWqW8EBV1hQYuqCtAef2q
5lDUA / hV + a4U ++ br2PUbhM0H3qP0gPAmWccEEjwi1 / j3N8RrT61o7DlIYADnWrl2vfanPXD + wVxc
AHX9CiUM7sTo7RMmFosktmAOVS900leEdROCR9iM7Zs50p6PyHffleg / IdqBEVdI78gAIEBcqbA6
FAMB + eJr253U7kbWK / dO + z3uLlW3WIGwx / + / 6px9fuOCCh + AL6daPfFXSr5Wvz2rr / c2cTW1uwRt
Gc7N2jfXIEC6LC8JHoQxn8UlslTC12NnCT7 / p84AcFqB74ViQ2B / NAOGsjL7wADq1Y1idU0gXzgJ
z88WoQzkNP8l1JN28Y0ueW4fW + 9OnI4BN1nsGYrVnP0EK0Du4DLYPxZ6 + H5IAbEsqbE / AAaflq3m
9v0nPc5TZKryWWwAqe0CQEPCBjwEFLClfLzMRDf7YJDSfdpIGNKxkMtxQz5mVUu8nmz7sA7IKm3
q3zz6tTuHKxCLjjIbhWPoQw7RfzxvrXlyRV0ErIXEc3z5Nu142U1ZEhrdds99MbUNgDHyT3MIDTc
WTHq8NW7x1yYLqK2g5n2gCWIAVQkoB9Sd9R8ml0EHnCQpfuAgkVF7p + hcu2sGhA7UHFb / K54c7kH
JT2rtbgiECCaa7y7a3AtQ8x / YnegM1rOa3AEgILxcTuc8NXIGxKAcmgcqncSKFm0 + GVh34Ks4Ca6
mLKrDRkAdJE7fvjlTdyZd6IZeFjoMBUr0Oss8GZIEA8JAX15gXYBSulrshIayPQtWZJwK94rAkiA
Nvf3mmAvGj + 2mK + I1rAkorUZmznVe7sM7WTagTq8TvPdsJyJVh2sWSQmeunSj + i4dOY2YDXzsRBY
H6cxvacIkQXGZKDpUABP8UcNslpUMFyWYINks4Ais3c7LfRktkuLU0SAM + ghrSZPZanGAPMBE + Hi
QzPqo1s6rtlvFSGZlBGUAXB2B60DBoBjeP / vQgJa5eDI + 1T62TF / 7V0mY39eHq8fr17sAovGM3EV
p22sGHrTr8poMFo9rlh / ekPpVtgDqcIkmx4AD647TveT4tgtIJd2RoIIYliGIUPWwPloB9vIeqgf
cw8 / AHwYBCsMtKPj4Q3YA1nsoFDkynvLIdBCq + 3j8iPGQAUCPgQqQBEVeYvbBQQdaLoAUiXXA06D
iU1wwBubeq + awjNNYAf656ARWVRVg2yabvpLxuu8n / 0m6PRdwus5QSfuMQDn9jvw8JQthjErS5AO
4 + lodu6lZ9t1fwXjTfZTx855NErDYAuLtSqJlQ2sWDitytyP8zoxnrf4xtV + XlA / dKJXjYjA0q2t
41b0lD9 + Qk0 / iefL3GlEkAqkJFBsxOdndROfSLc5CczexkbfYo / qReS1WrbuyAHQB / Cr72MFRKrK
eZ21Cj22nfpw27rIBTJaAHU8e3azXR3SvGMvWvcZcAgHNdyu2shZN4zZOf3h6 / rlEPSuSEw + IEog
pci7XfcxtvD2oORT / k / YLQ / Cq7nu1pvh4xIZNAdgG0H0ubtGvpfo8bOEPr72fBeuzS4G7jMAcwWF
27ALSMvbKdiYk758z1fhZ2tpE582oakBCDQpYLb2f9aaVde2s07g / YmQ7K / 4hMXjjv / vydgAAHQ
so9Qndo / gHfAMfN4bq559ZJvb9uXqspwG9t85m88P5 + Rr4aOSdOAgVlikVHyd2Ti3HmKBi / MqaDV
sL1wnAE / ugR4gKqO / JC8W22Jze5spAZvgZQABAHIQmjKk5GtKIji7fxd1TQdaKuPNiFUFWJS65ED
L8z9yBQjcAwxBBYEEAsH4A2Pyua7maKaRlLL19G3fKeTethH7eWqznAFAdIQSJG4csaHOYnnS / OX
OOHLz8lZFKrC0uU3JBd6GNU6sAhYHhEwgm3AHBDEV3azVaxnDsmWxXKeZ66gYHfVOQvAAfnmKdAA
BIEPC8QQIyeprt8vV1H5c5vaVWRPLOCM3l6atqSeFYOWBegAvIdAGgntK2Uj5vwFD4VlJKKRlVC0J
z7nP3MFqAVT7rRek8F / zY / 7AZCE1Mrg2UBFgb3MwWGPk5njynv4mSpr8zgQJVAA5f2WelIGtynR4
eJZ7SHrvi9vVrAGyAhaHV1CaAlNhwXdaqGcgCRBIub9r50A4P453oWfa3 / f1novK3rrL0cO4g3SK
af + J5ll / sWAnU9Qg + 7GsMugb1ndCCCgnUIOCxgAps78HV6c2X8Pd5fpr99Tvf99P7ZH36B82eSfM
zPMVDxYTi4TULbd9 + HWsQBk0FnkMj7sKQBqbHS8W2fZvLjn9dn2ne1C8G8udbkfmv4OO1Hv / zKzf
W / 4AYYDnjbtA5BuaCPj + 2deggY + 4fpvWkp / 7SWnnYjYdHgsPzmsdvs2BQGr3 / iVIjIZqXj5dxXoc
QxEggGx2rMV7F88Te7m62r2tH5M7Oqu1 / VivenvOV7fciH0WjqZr5PVHvRXfy / olOD8Vzpv8KmJJ
GVj2z9btv797opNtz / ++ ljzO6sve + 7v7PIf3X + zwH / 490QCcPwaLh2wUq6aAI15GitK8xY / VBAmD
Y4wECM2NzkWYHL1PCtuLlm + KZ0fN2uW2X8QbS7RlG / 1hWL7ZKPCigVz + ow7W1exUYkkdhiNj1rhS
6aPGP03 + 8vp81Tydlr9vBVV3dtdNQeC9a7swGT7LHEKLnz6TbcjF6 + sEDIrebWc6 + symQJF8 + 0DA
KIQE9316H0UJ3jfRil5W0zvf / m96XYOGW5m + RA8DZsIaS1NVa8 / qbc03xlIbFgaf8czo6TwZy4Qq
6oXJBwkckTuv3j + TEAfx2s2lorR9max28vusi + x + UFAWnWPsdzOw5p6pTVKjx + FrlFxff + 0 / W8Z2
Pfx + lo5 / jvwnM3Ej6fonL / tG9Jb5lthrAMgMbgqyDfUELd7f73lQZ + kBSgP + 5d58WT9mRlNjT2vN
/ K96yv + uCy2PxPsoZa1Qdn4X + deSU7Mn1VyW9ymSQKfkeYaeSFbQQKvLHS8ezgjOE31LchHRplOT
7nwrrfv / VQ6Cevfo + 9LEdvZfx0PjiVPWsMq3S0cR9sC5ulgk4 / NXKv4aNFQ8 + z6Wja74nE4aVJGN
hax + pB0f8 / CranGLVF51Dbk9HG / bYcCo2Yk9bMrOGN6uh7hZNvCgkCJAEdUbMrNL3sh / YGOpv5I5
RL6cXmOAqaCWoDU7jrXfDDSWkkHmkoPI2H0TFz3N + ooK6ez89y49HZqWWzn / prn7z29WzUMpP87P
dR1vh97fLrzLn8QJe + FggQcJyeQOqBBoH5zrPAnmGE3UVGwbVa6 / OAt / wImAcgKDCXq4 / vZJLZ8C
O / 7L3zaNrYvjeRX7FlrJVvRe46TEw9oJm92C15gE5MLfFg4MgSJIqsL85CjaswBXvKP6gf8DQjpb
7bohufI7 / Lfve / V68Rt59Vw6Ccwklrdt3fWv4U9Ieqm + 6TBAt4H6i12qZuCaoPl01QZoD7VYqZSO
qqsZxhuB14YOQ2TqJDxrIupeT4ezp / e96svnMfH4HSdX3WTqPRTyrIkgdE / xfn3mdk3FEiamcZz +
aN4bEDzY8kLcViBKY0ADNEfO0FMDk3s + lVIqehPUL9zsT + 7fOu / szXSwUQiJiwSF6XxxN + zGIqIh
b / 2eZF1JSQHRInCCL8Kx0wCBSFH4kIOVRkINIwSrZp9MLEur90Z / lHg + FIfX25SLhuiTEUsxgSBC
W8u7Vyoa5oyOt47 / 9LW1jCRvAt9QHWIFoA4hPiHxKjYD4RKsZYYCEix / 7v4jmv / BoJ + w73wg17ei
UfWmS9Gym1Mvk6DIVAAA2dVFlODLKZ7CKFV2XZd8JfU3aSJdOX / 7CXC82dxOaGh4 / t2OkzHr1feY
3uchvA0E3hbXh / e9xL5f1NrmhDcAdYFaN3xjnWcGtPmboVrR + 425TFUK90qF50vGqFIQ8vB23tgr
hk + BmYDp8XppnmIAFVtly8H9CdxfBVdKDAfpCHsxgOg8r + s7TmgnFB4khuezp8eGRNAbDeBYM3k +
S0tX6iPW1vuU6PkPBhiN6ZbuWqEi5r8EgQxRdSMDrm2C2wJ35ItBOIAwgNYAwhzwCnjFYaYLe4zo
hUtVOu + SabSJGRo5RqKoG1ur7sug33u7uA6fT6D2EgmX863NQOqpYgC7iC1XuSDmQ8ejtoHUz7Xj
+ wAwK2VU4shsdl8KjrAD3Ec / x4iIhh6cfC / Ux8CaDwWCCEZNWAhww2aHZQhCA / mrFo + vN / Qvbg
cEblqZlCXbDMb60IqgnNJUAjFwAQhCHd9gYGJYuGvqlApR6hSmG4n1IQIfSXftZLPZhCwOdMJARs
b2u4hFb2ggZGvjM / hJSUNI / 3 / f6ycRymgi4X / ka / HWKpUDqAw / j / jx7eXc76q1P2DLJI8S / a / nV6
S5Ud56prWfrixl + o6wtGlyvkOqos1oPAECxSyM5KaMCjlLFIDx + ej59Fkdf8jAjUZvw / yBT6ygvL
oeLO214jL3sfoifigCAfaz2OsowBeZ + rf2 + 6nkyfF09j90 + bpttxO3Hx14I5ct4Q9jH93j + nVR2g
hEAxAMQqkMKV / kWXwzc77t52KJz2q1zmq1S4G1x69Kz + oA / QU4AB / 2y1xh6PhsZtoWaHyDu0S5IQ
aSh8LeP31 + wIGbyOZVPkM2n / YjAUNv2bEHXhYHIFvQT9yf8RCXZd4vl6ASrnKLI + d2qYnNrUW1Ng
NlAj0rf5VkhJxFSCanG + iIcyyqL4qX9xHgAA + mluM1rrwAtLkkd1ofd87lZem + qk1KEb5dpDbi7q
hgDK2LduIJ5owSR57uIuyP6wkaW2JAprdq9w9EpFoUeSbl7a7F9PjWsiBmAgY3r3ePVBlVEoMPe3
O9cQdd6PWGEBoO37at + 5dF + QAGt09ODv53V / e5D1ECNjYVlx / s + fB3 + yrXxFKOWJJzXMe / Qtqhjg
IljLH0OeH6nbW3U5Tf78Q0uY6rxzGXG + F8C0K4a + E4nmxVxbwit7QEFOk2lfszEG + ggIIlbcPP6G
S / 84Fp8AMwakQn2JjdgACpWYA7bjIRrLGtDkL0EC / wzdu + ttg9GUvl3BuQv7OJHS9NQBw + YEEKV0
BXkDbI36AKvsHLP1g1 / iP8aSBr8podjCY2fuLHnOOX4sthQSSyUwlC97ntxmDg28dRtbzRuQ0wP8
3V62hO9nc7X9fb9fznzhRBNYF5IFEEjJBIBIImk7I8Xh5Pn9xywJX7HKInI9jqQQbwACgmCD1RR
BPBFEE // F3JFOFCQsfyJNg ==
'' '
print (['', 'Up', 'Down'] [int (pickle.loads (bz2.decompress (base64.b64decode (s)))) .ict (numpy.array ([skimage.transform.resize (skimage.io) .imread (sys.argv [1], as_grey = True), (24,12), mode = 'constant'). flatten ()]) [0])] + 'chèvre')

update: par demande, voici les données de formation redimensionnées au format 24x12 et combinées en une seule image pour faciliter le téléchargement / la présentation. c'est plus d'une centaine d'images. http://deeplearning.net/datasets/ , http://www.vision.caltech.edu/Image_Datasets/Caltech256/ , recherche d'images duckduckgo, recherche d'images Google, etc.

données d'entraînement à 24x12 pixels

don lumineux
la source
Pouvez-vous publier vos données d'entraînement?
qwr
Certaines des images originales que j’ai utilisées sont protégées par le droit d’auteur. Je ne peux donc pas toutes les publier. Cependant, j’en ai réduit la taille à la taille utilisée dans le système, 24x12, et les ai affichées dans une seule image de montage ci-dessus, qui devrait être considérée comme ' utilisation équitable'.
Don lumineux
6

Scikit-learn avec Random Forests, 100%

L’approche éprouvée consiste à utiliser des réseaux de connexion, mais les forêts aléatoires peuvent très bien fonctionner prêtes à l’emploi (peu de paramètres à ajuster). Ici, je montre quelques techniques générales dans les tâches de classification des images.

J'ai commencé avec 100 images de chèvres pour l'entraînement, découvertes dans Google Images (aucun résultat AFAIK dans les données d'entraînement ne correspond aux données de test). Chaque image est redimensionnée à 20x16 en niveaux de gris, puis le tableau est aplati pour produire une ligne dans un tableau 2D. Une version retournée de l'image est également ajoutée en tant que ligne pour les données d'apprentissage. Je n'ai eu besoin d'aucune technique d'augmentation de données .

grille de chèvres

Ensuite, je nourris le tableau 2D dans le classifieur de forêt aléatoire et appelle prédire pour produire 50 arbres de décision. Voici le code (désordonné):

RESIZE_WIDTH = 20
RESIZE_HEIGHT = 16

def preprocess_img(path):
    img = cv2.imread(path, 0)  # Grayscale
    resized_img = cv2.resize(img, (RESIZE_WIDTH, RESIZE_HEIGHT))
    return resized_img


def train_random_forest(downgoat_paths, upgoat_paths, data_paths):
    assert len(data_paths) == 100
    # Create blank image grid
    img_grid = np.zeros((10*RESIZE_HEIGHT, 10*RESIZE_WIDTH), np.uint8)

    # Training data
    TRAINING_EXAMPLES = 2*len(data_paths)
    train_X = np.zeros((TRAINING_EXAMPLES, RESIZE_WIDTH*RESIZE_HEIGHT), np.uint8)
    train_y = np.zeros(TRAINING_EXAMPLES, np.uint8)

    TEST_EXAMPLES = len(downgoat_paths) + len(upgoat_paths)
    test_X = np.zeros((TEST_EXAMPLES, RESIZE_WIDTH*RESIZE_HEIGHT), np.uint8)
    test_y = np.zeros(TEST_EXAMPLES, np.uint8)


    for i, data_path in enumerate(data_paths):
        img = preprocess_img(data_path)

        # Paste to grid
        ph = (i//10) * RESIZE_HEIGHT
        pw = (i%10) * RESIZE_WIDTH
        img_grid[ph:ph+RESIZE_HEIGHT, pw:pw+RESIZE_WIDTH] = img
        flipped_img = np.flip(img, 0)

        # Add to train array
        train_X[2*i,], train_y[2*i] = img.flatten(), 1
        train_X[2*i+1,], train_y[2*i+1] = flipped_img.flatten(), 0

    cv2.imwrite("grid.jpg", img_grid)

    clf = RandomForestClassifier(n_estimators=50, verbose=1)
    clf.fit(train_X, train_y)
    joblib.dump(clf, 'clf.pkl')

    for i, img_path in enumerate(downgoat_paths + upgoat_paths):
        test_X[i,] = preprocess_img(img_path).flatten()
        test_y[i] = (i >= len(downgoat_paths))


    predict_y = clf.predict(test_X)
    print(predict_y)
    print(test_y)
    print(accuracy_score(predict_y, test_y))

    # Draw tree 0
    tree.export_graphviz(clf.estimators_[0], out_file="tree.dot", filled=True)
    os.system('dot -Tpng tree.dot -o tree.png')


def main():
    downgoat_paths = ["downgoat" + str(i) + ".jpg" for i in range(1, 10)]
    upgoat_paths = ["upgoat" + str(i) + ".jpg" for i in range(1, 10)]
    data_paths = ["data/" + file for file in os.listdir("data")]

    train_random_forest(downgoat_paths, upgoat_paths, data_paths)

Voici le premier arbre de décision (mais comme le modèle est dans un ensemble, il n'est pas particulièrement utile )

arbre de décision n ° 0

qwr
la source
c'est très intéressant ... vos données d'entraînement semblent beaucoup plus variées que les miennes.
Don brillant le
@donbright, je publierais mes données d'entraînement, mais le dossier contenant toutes mes images se trouverait sur un disque dur mort. Si quelqu'un est assez ambitieux, il peut utiliser la recherche inversée d'images dans Google pour trouver les images que j'ai utilisées.
Qwr
c'est super. J'ai téléchargé de nombreuses images, mais j'ai passé beaucoup de temps à les trier pour obtenir des images "nettes". Il est intéressant de voir comment il est possible de s'entraîner à partir d'images plus "sales" sans avoir à passer autant de temps à trier.
Don Bright le
@donbright Je pense que plus de données de formation et de variété sont meilleures. Pour "nettoyer" et "sale", nous pouvons utiliser l'augmentation de données pour créer "plus de données".
Qwr