Visualiser les mots

20

Étant donné un mot composé uniquement de lettres minuscules, procédez comme suit:

  1. Pour chaque lettre, obtenez la factorisation principale de sa position dans l'alphabet.
  2. Pour chaque facteur premier, p , dessinez un diamant de longueur latérale p et collez la lettre au milieu du diamant.
  3. Le plus gros diamant est au milieu, les petits diamants suivants (du plus gros au plus petit) alternent entre aller en bas ou en haut.

Remarque: pour la lettre a, utilisez une longueur de côté de 1.

Exemple: chat

  • c : 3 = 3
  • a : 1 = 1
  • t : 20 = 5 * 2 * 2

Le diagramme:

                 .
                . .
               . t .
                . .
                 .
                 .
                . .
   .           .   .
  . .         .     .
 .   .   .   .       .
.  c  . .a. .    t    .
 .   .   .   .       .
  . .         .     .
   .           .   .
                . .
                 .
                 .
                . .
               . t .
                . .
                 .

Exemple: chien

  • d : 4 = 2 * 2
  • o : 15 = 5 * 3
  • g : 7 = 7

Diagramme:

                         .
                        . .
           .           .   .
          . .         .     .
         .   .       .       .
  .     .     .     .         .
 . .   .       .   .           .
. d . .    o    . .      g      .
 . .   .       .   .           .
  .     .     .     .         .
  .      .   .       .       .
 . .      . .         .     .
. d .      .           .   .
 . .       .            . .
  .       . .            .
         .   .
        .  o  .
         .   .
          . .
           .

-20% de bonus si votre programme sort dans un fichier texte appelé "[votre-mot] .txt". Ensuite, saisissez un vrai mot (ou une phrase, minuscule sans espaces) d'au moins 20 lettres et que personne d'autre n'a encore choisi, et collez la sortie entre a <pre>et a </pre>dans votre réponse.

geokavel
la source
Vos exemples semblent utiliser des diamants de taille p + 1 points ...
Jaykul
3
@Jaykul Bonne question. La longueur du côté est déterminée par le nombre d'espaces entre les points.
geokavel

Réponses:

8

Matlab, 466 393 - 20% = 314,4 octets

Golfé: (pourrait économiser quelques octets supplémentaires, également grâce à l'aide de @ AndreasDeak!)

function q(W);function z=g(l,c);[x,y]=ndgrid(abs(-l:l));z=0*y;z(~x&~y)=c;z(x+y==l)=46;end;w=W-96;n=numel(w);R=n*26;C=1;A=zeros(2*R);for k=1:n;f=sort(factor(w(k)));C=C+max(f)+1;d=-1;r=R;for F=fliplr(f);v=-F:F;while norm(A(r+v,v+C));r=r+d;end;A(r+v,v+C)=g(F,W(k));d=-d;end;C=C+max(f);end;A=A(find(sum(A,2)),find(sum(A)));f=fopen([W,'.txt'],'w');for k=1:size(A,1);fprintf(f,[A(k,:),'\n']);end;end

Cela devrait aussi fonctionner dans Octave (opensource), mais seulement avec beaucoup d'avertissements. Utilisez cette version si vous voulez l'essayer en octave (sortie sur console, au lieu de fichier):

function q(W);function z=g(l,c);[x,y]=ndgrid(abs(-l:l));z=0*y;z(~x&~y)=c;z(x+y==l)=46;end;w=W-96;n=numel(w);R=n*26;C=1;A=zeros(2*R);for k=1:n;f=sort(factor(w(k)));C=C+max(f)+1;d=-1;r=R;for F=fliplr(f);v=-F:F;while norm(A(r+v,v+C));r=r+d;end;A(r+v,v+C)=g(F,W(k));d=-d;end;C=C+max(f);end;A=A(find(sum(A,2)),find(sum(A)));disp([A,'']);end

Non golfé et expliqué:

function q(W)
function z=g(l,c) %get a square matrix for one prime factor
[x,y]=ndgrid(abs(-l:l));
z=0*y;
z(~x&~y)=c;    %character in the middle
z(x+y==l)=46;  %dots
end;
w=W-96;                %convert word to the corresponding indices                  
n=numel(w);
R=n*26;                %keeps track of the main row 
C=1;                   %keeps track of the current column
A=zeros(2*R);          %make a 'canvas' matrix that is way to big 
for k=1:n;
    f=sort(factor(w(k)));          %get all the factors of current character
    C=C+max(f)+1;                  %update current column
    d=-1;                          %search direction
    r=R;
    for F=fliplr(f);              
        v=-F:F;
        while norm(A(r+v,v+C));    %go up or down until there is enough space to write the prime factor
            r=r+d;
        end;
        A(r+v,v+C)=g(F,W(k));     %insert all the prime factors
        d=-d;
    end;
    C=C+max(f);
end;
A=A(find(sum(A,2)),find(sum(A))); %truncate all the unneccessary padding
f=fopen([W,'.txt'],'w');     %write to file
for k=1:size(A,1);
    fprintf(f,[A(k,:),'\n']);
end;

end

Le mot demandé: (Et ici sous forme de fichier: (beaucoup de zoom arrière): supercalifragilisticexpialidocious.txt )

                       . . .                   
                      . . . . . .                  
                     . . . . . .                 
                    . . . . . .                
                   . . . . . .               
                  . . . . . .              
                 . . . . . .             
                . . . . . .            
               . . . . . .           
              . . . . . . .          
             . . . . . . . .         
            . . . . . . . . . t. . . . .        
           . . . . . . . . . . . . . . . . . . . . . . . . .       
          . . . . . . . r. . l. . r. . . . l. . . . . X . . . . l. . . . .      
         . . . . . p. . . . . . . . . . . . . . . . . . . p. . . . . . . . .     
        . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    
       . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
    . s .. u .. p .. e .. r .. c ..a .. l .. i .. f .. r ..a .. g .. i .. l .. i .. s. . t .. i .. c .. e .. x .. p .. i ..a .. l .. i .. d .. o .. c .. i .. o .. u .. s .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
       . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   
        . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    
         . . . . . p. . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. . . . . . . . ré . . . . . . . . .     
          . . . . . . . . . l. . . . F . . . . . . . . l. . . . . . . . . X . . . . . . l. . . . . . . . . . . . .      
           . . . . . r. . . . je . . . . r. . . je . . . . je . . . . . . je . . . . . je . . . . je . . . . . je . . . . . .       
            . . . . . . . . . . . . . . . . . . . . t. . . . . . . . . . . . . . . . . . .        
             . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . o. . . . o. . . . .         
              . . . . . p. . . . . . . . . . . . . p. . . . . . . . . . . .          
               . . . u. . . . . . X . . . . . . . . u. . .           
                . . . . . . . . . . . . . . . .            
                 . . . . . . . . . . .             
                  . . . . . . . .              
                   . . . . . .               
                    . . . . . .                
                     . . . . . .                 
                      . . . . . .                  
                       . . .                   
flawr
la source
Ne A=A(find(sum(A,2)),find(sum(A)));suffirait -il pas de retirer le rembourrage en une seule étape?
Andras Deak du
En fait, j'ai obtenu des résultats parfaits lorsque j'ai collé le texte de sortie entre deux <pre>balises. Pourquoi n'essayez-vous pas!
geokavel
Etes-vous sûr d'avoir besoin sort(factor())? MATLAB factorsemble déjà être trié. Et vous pourriez définir une variable pour max(f), puisque vous semblez utiliser deux fois la même quantité.
Andras Deak
1
@geokavel Je crois que vous regardez les choses dans l'autre sens :) De [la Bible] (en.wikipedia.org): MATLAB -> "Version initiale - 1984", GNU Octave -> Version initiale - 1988 ". Comment est-ce que Mathworks permet à leur produit commercial d'être copié dans des détails aussi mineurs? Ou si vous vouliez simplement dire pourquoi il est toujours rentable: je suis sûr que les boîtes à outils et fonctionnalités MATLAB disponibles dépassent largement Octave (bien que la syntaxe d'Octave soit parfois plus riche! Sans parler de la vitesse (je pense).
Andras Deak
1
@geokavel C'est comme AndrasDeak l'a dit: Octave est un clone de Matlab, mais malheureusement pas parfait, car les développeurs ont également essayé d'améliorer la langue. Voici une version légèrement modifiée qui fonctionne également dans l'interpréteur en ligne: goo.gl/Jk7mpV
flawr
6

Funciton , non compétitif, 29199 octets

J'ai apprécié ce défi car il a mis en évidence le manque criant de fonctions de bibliothèque très utiles. Je vais inclure toutes ces fonctions ici (et dans le nombre d'octets) car je les ai écrites après la publication de ce défi.

Source complète dans un seul fichier

Explication

Comme toujours, obtenez un meilleur rendu en exécutant javascript:(function(){$('pre,code').css({lineHeight:5/4});})()dans la console de votre navigateur.

ɹ Inverser

Comme vous le savez peut-être ou non, Funciton est livré avec une bibliothèque pleine de fonctions pour les listes , qui sont des valeurs codées dans un seul entier énorme, ainsi qu'une bibliothèque séparée pour les séquences évaluées paresseux , qui utilisent des expressions lambda (fonctions anonymes) dans pour être paresseux. Bien sûr, il existe également une bibliothèque pour les fonctions de gestion des chaînes.

Pour ce défi, j'avais besoin d'une fonction pour inverser une chaîne et une fonction pour inverser une séquence évaluée paresseusement. Étonnamment, je n'en avais qu'une pour les listes - exactement celle dont je n'avais pas besoin. Voici donc les fonctions inverses pour les séquences paresseuses ( ɹ) et pour les chaînes ( ):

              ╓───╖             ╔════╗ ┌────╖        ╓───╖
              ║ ɹ ║             ║ 21 ╟─┤ >> ╟──┐     ║ ⇄ ║
              ╙─┬─╜             ╚════╝ ╘═╤══╝  │     ╙─┬─╜      ┌──┐
          ┌─────┴─────┐                ┌─┴─╖   ├───────┴────────┤  │
        ┌─┴─╖ ┌───╖   │                │ ⇄ ║   │   ╔════╗ ┌───╖ │  │
      ┌─┤   ╟─┤ ɹ ╟─┐ │                ╘═╤═╝   │   ║ −1 ╟─┤ ≠ ╟─┴┐ │
      │ └─┬─╜ ╘═══╝ │ │                ┌─┴─╖ ┌─┴─╖ ╚════╝ ╘═╤═╝  │ │
      │   │   ┌───╖ │ │                │ ‼ ╟─┤ ? ╟──────────┤    │ │
      │   └───┤ ʬ ╟─┘ │                ╘═╤═╝ ╘═╤═╝  ╔═══╗ ┌─┴─╖  │ │
      │       ╘═╤═╝   │                ┌─┴─╖ ╔═══╗  ║ 0 ╟─┤ ≠ ╟──┘ │
      │ ╔═══╗ ┌─┴─╖   │              ┌─┤ ʃ ╟─╢ 1 ║  ╚═╤═╝ ╘═══╝    │
      └─╢ 0 ╟─┤ ? ╟───┘              │ ╘═╤═╝ ╚═══╝    │            │
        ╚═══╝ ╘═╤═╝                  │   └────────────┘            │
                │                    └─────────────────────────────┘

Les séquences paresseuses que l'on utilise ʬ, c'est-à-dire «ajouter un élément à la fin d'une séquence paresseuse». La chaîne ʃutilisée (sous-chaîne) et (chaîne concaténée).

Primes

Bien que j'aurais pu faire une factorisation en essayant simplement de diviser n par tous les facteurs dans l'ordre, j'ai décidé que je voulais une fonction de bibliothèque qui génère des nombres premiers. La fonction suivante prend un entier n et implémente le tamis d'Ératosthène pour générer tous les nombres premiers jusqu'à n . Il le fait comme une séquence paresseuse, il ne générera donc que le nombre de nombres premiers que vous évaluez réellement.

                                       ╓───╖
                                       ║ Ṗ ║
                                 ╔═══╗ ╙─┬─╜
                                 ║ 0 ║ ┌─┴─╖
                                 ╚═╤═╝ │ ♭ ║
                          ╔═══╗ ┌──┴─╖ ╘═╤═╝
                          ║ 2 ╟─┤ Ṗp ╟───┘
                          ╚═══╝ ╘══╤═╝
    ┌──────────────┐               │
    │              ├─────────────────────────────────────────┐
    │            ┌─┴─╖                                       │
    │          ┌─┤ · ╟────────────────────────────┐   ╓┬───╖ │
    │          │ ╘═╤═╝                            ├───╫┘Ṗp ╟─┤
    │          │   │           ╔═══╗ ┌────╖     ┌─┴─╖ ╙─┬──╜ │
    │          │   │           ║ 1 ╟─┤ >> ╟─────┤ · ╟───┴─┐  │
    │          │   │  ┌───╖    ╚═══╝ ╘══╤═╝     ╘═╤═╝     │  │
    │          │ ┌─┴──┤ ♯ ╟─────┐    ┌──┴─╖ ┌───╖ │       │  │
    │          │ │    ╘═══╝ ┌─┐ │ ┌──┤ Ṗp ╟─┤ ♭ ╟─┴─┐     │  │
    │          │ │          ├─┘ └─┤  ╘══╤═╝ ╘═══╝ ┌─┘     │  │
    │          │ │        ╔═╧═╕ ┌─┴─╖ ┌─┴─╖     ┌─┴─╖     │  │
    │          │ └────────╢   ├─┤ · ╟─┤ ? ╟─────┤ · ╟─┐   │  │
    │          │ ┌───╖    ╚═╤═╛ ╘═╤═╝ ╘═╤═╝     ╘═╤═╝ │   │  │
    │        ┌─┴─┤ ♭ ╟─┐ ┌──┴─╖   │   ┌─┴─╖       │   │   │  │
    │        │   ╘═══╝ └─┤ Ṗp ╟───┘ ┌─┤ ? ╟───────┘   │   │  │
    │ ┌───╖  │  ╔════╗   ╘══╤═╝     │ ╘═╤═╝           │   │  │
  ┌─┴─┤ ÷ ╟──┘  ║ −1 ║   ┌──┴─╖   ╔═╧═╗ │            ┌┴┐  │  │
  │   ╘═╤═╝     ╚══╤═╝ ┌─┤ >> ╟─┐ ║ 0 ║              └┬┘  │  │
  │   ┌─┴─╖ ┌────╖ │   │ ╘════╝ │ ╚═══╝               │   │  │
  │   │ × ╟─┤ << ╟─┘ ┌─┴─┐    ╔═╧═╗                   │   │  │
  │   ╘═╤═╝ ╘══╤═╝  ┌┴┐ ┌┴┐   ║ 1 ╟───────────────────┴─┐ │  │
  └─────┘     ┌┴┐   └┬┘ └┬┘   ╚═══╝                     ├─┘  │
              └┬┘    │   └──────────────────────────────┘    │
             ┌─┴─╖ ┌─┴──╖                                    │
             │ ÷ ╟─┤ << ╟─┐                                  │
             ╘═╤═╝ ╘════╝ ├──────────────────────────────────┘
              ┌┴┐         │
              └┬┘         │
      ╔════╗ ┌─┴──╖       │
      ║ −1 ╟─┤ << ╟───────┘
      ╚════╝ ╘════╝

La fonction d'aide,, Ṗpprend:

  • Un compteur en cours d'exécution qui ne cesse de décrémenter jusqu'à ce qu'il atteigne 0.

  • Le tamis, qui a un bit défini pour chaque numéro qui est déjà connu comme non premier. Initialement, le bit le moins significatif représente le nombre 2, mais nous le décalons vers la droite à chaque itération.

  • Un nombre n qui indique quel nombre est représenté par le bit le plus bas du tamis; ceci est incrémenté à chaque itération.

À chaque itération, si le bit le plus bas du tamis est 0, nous avons trouvé un premier n . Nous utilisons ensuite la formule I déjà décrite dans Remplissez les lignes, les colonnes et les diagonales d'une grille NxN pour régler tous les n bits -ème dans le tamis avant de passer à la prochaine itération.

③ Factorisation première

                             ╓───╖
                             ║ Ḟ ║
                             ╙─┬─╜
                       ┌───────┴──────┐
                       │ ┌───╖ ┌────╖ │
                       └─┤ Ṗ ╟─┤ Ḟp ╟─┘
                         ╘═══╝ ╘═╤══╝
                                 │
               ┌────────────────────────────────────────────┐
               │                                     ╓┬───╖ │
       ┌───────┴─┐     ┌───────────────────────┐   ┌─╫┘Ḟp ╟─┘
       │ ╔═══╗ ┌─┴─╖ ┌─┴─╖ ┌───┐ ┌────╖      ┌─┴─╖ │ ╙────╜
       │ ║ 0 ╟─┤   ╟─┤ · ╟─┘┌┐ └─┤ Ḟp ╟──┐ ┌─┤ · ╟─┴──┐
       │ ╚═══╝ └─┬─╜ ╘═╤═╝  └┤   ╘═╤══╝  ├─┘ ╘═╤═╝    │
       │       ┌─┴─┐ ┌─┴─╖ ╔═╧═╕ ┌─┴─╖ ┌─┴─╖ ┌─┴──╖ ┌─┴─╖
       │       │   └─┤ · ╟─╢   ├─┤ ? ╟─┤ · ╟─┤ ÷% ╟─┤ · ╟─┐
       │       │     ╘═╤═╝ ╚═╤═╛ ╘═╤═╝ ╘═╤═╝ ╘═╤══╝ ╘═╤═╝ │
       │       │    ┌──┴─╖   │   ┌─┴─╖ ┌─┴─╖   └──────┘   │
       │       │    │ Ḟp ╟───┘ ┌─┤ ? ╟─┤ ≤ ║              │
       │     ┌─┴─╖  ╘══╤═╝     │ ╘═╤═╝ ╘═╤═╝              │
       └─────┤ · ╟─────┘     ╔═╧═╗ │   ╔═╧═╗              │
             ╘═╤═╝           ║ 0 ║     ║ 2 ║              │
               │             ╚═══╝     ╚═══╝              │
               └──────────────────────────────────────────┘

C'est assez simple. Il suffit de parcourir les nombres premiers jusqu'à n et de voir lesquels divisent n . Si l'on divise n , n'oubliez pas de continuer avec le même nombre premier pour que nous le renvoyions plusieurs fois s'il divise n plusieurs fois. Cela renvoie la séquence vide pour tout nombre inférieur à 2.

Générez un diamant

Cette fonction génère un diamant unique donné un caractère et un rayon. Il utilise uniquement le personnage pour le placer au centre du diamant.

                                   ┌───╖
             ┌─────────────────────┤ ♯ ╟───────────┬─────────┐
             │ ┌───╖ ╔═══╗   ┌───┐ ╘═══╝           │         │
             └─┤ ♫ ╟─╢ 0 ║   │ ┌─┴─╖               │         │
               ╘═╤═╝ ╚═══╝   │ │ ʭ ╟───┐           │         │
               ┌─┴─╖   ┌─────┘ ╘═╤═╝   │           │         │
               │ ɱ ╟───┤ ┌───╖ ┌─┴─╖ ╔═══╗   ╓───╖ │         │
               ╘═╤═╝   └─┤ ɹ ╟─┤ ʓ ╟─╢ 1 ║ ┌─╢ ◇ ╟─┤         │
                 │ ╔═══╗ ╘═══╝ ╘═══╝ ╚═══╝ │ ╙───╜ │         │
                 │ ║ 0 ║                   │     ┌─┴─╖       │
                 │ ╚═╤═╝                   │     │ ♭ ║       │
               ╔═╧═╕ │   ╔════╗            │     ╘═╤═╝       │
           ┌───╢   ├─┘ ┌─╢ 21 ║          ┌─┴─╖   ┌─┴─╖     ┌─┴─┐
           │   ╚═╤═╛   │ ╚════╝ ┌────────┤ · ╟───┤ · ╟─┐ ┌─┴─╖ │
           │   ┌─┴─╖ ┌─┴──╖ ┌───┘        ╘═╤═╝   ╘═╤═╝ ├─┤ = ║ │
           │ ┌─┤ ‼ ╟─┤ >> ║ │              │     ┌─┴─╖ │ ╘═╤═╝ │
           │ │ ╘═══╝ ╘═╤══╝ │              │   ┌─┤ ? ╟─┘   │   │
           │ │   ┌───╖ │ ┌──┘              │   │ ╘═╤═╝     │   │
           │ └─┬─┤ ⇄ ╟─┘ │     ┌─────┐     │   │ ┌─┴─╖     │   │
           │   │ ╘═══╝ ┌─┴─╖ ┌─┴─╖ ┌─┴─╖ ┌─┴─╖ └─┤ · ╟──┬──┘   │
           │   └───────┤ · ╟─┤ ? ╟─┤ · ╟─┤ ‼ ║   ╘═╤═╝  │      │
           │           ╘═╤═╝ ╘═╤═╝ ╘═╤═╝ ╘═╤═╝   ┌─┴─╖  │      │
           │             └─────┘     └─┬───┘ ┌───┤ … ║  │      │
           │               ┌─────┐     │     │   ╘═╤═╝  │      │
           │            ╔══╧═╗ ┌─┴─╖ ┌─┴─╖ ┌─┴─╖ ╔═╧══╗ │      │
           │            ║ 32 ║ │ … ╟─┤ ‼ ╟─┤ ‼ ║ ║ 32 ║ │      │
           │            ╚════╝ ╘═╤═╝ ╘═══╝ ╘═╤═╝ ╚════╝ │      │
           │                   ┌─┴─╖       ╔═╧══╗       │      │
           │               ┌───┤ − ╟───┬─┐ ║ 46 ║       │      │
           │             ┌─┴─╖ ╘═══╝   │ │ ╚════╝       │      │
           └─────────────┤ · ╟─────────┘ └──────────────┘      │
                         ╘═╤═╝                                 │
                           └───────────────────────────────────┘

Cela fait un usage intensif des séquences paresseuses. Voici comment ça fonctionne:

  • Générez la séquence d'entiers de 0 à r (inclus).

  • Pour chacun de ces entiers α , générez une chaîne composée de ( r - α ) espaces ( ), suivi d'un point, suivi de α espaces - sauf si α = r , auquel cas générez un espace de moins et ajoutez la lettre. Nous avons maintenant le quart supérieur gauche du diamant.

  • À chacune de ces chaînes, ajoutez une autre copie de la même chaîne, mais avec les caractères inversés ( ) puis le premier caractère supprimé ( >> 21). Nous avons maintenant la moitié supérieure du diamant.

  • Prenez cette séquence et ajoutez-y la même séquence, mais inversée ( ɹ) et avec le premier élément supprimé ( ʓ). Nous avons maintenant tout le diamant.

Nous avons maintenant les cordes qui composent le diamant, mais nous avons besoin d'un peu plus d'informations. Nous devons savoir où se trouve le milieu vertical du diamant. Au départ, c'est bien sûr r , mais une fois que nous aurons ajouté d'autres diamants en haut et en bas de celui-ci, nous devrons garder une trace de la position du diamant «moyen» afin de pouvoir aligner correctement les autres piles de diamants . La même chose vaut pour l'étendue horizontale du diamant (besoin de cela lors de l'ajout de diamants en haut et en bas). J'ai également décidé de garder une trace de la lettre; J'en ai besoin car sinon la fonction (à laquelle nous reviendrons dans la section suivante) devrait avoir quatre paramètres, mais Funciton n'en autorise que trois.

                             ┌─────────────────┐
                             │  ╓───╖          │
                             ├──╢ ◆ ╟──┐       │
                             │  ╙───╜  │       │
                             │   ┌─────┴───┐   │
                           ┌─┴─╖ │ ┌───╖ ┌─┴─╖ │
                         ┌─┤ · ╟─┴─┤ › ╟─┤ › ║ │
                         │ ╘═╤═╝   ╘═╤═╝ ╘═╤═╝ │
                         │ ┌─┴─╖     │   ┌─┴─╖ │
                         │ │ ◇ ╟─────────┤ › ╟─┘
                         │ ╘═╤═╝         ╘═══╝
                         └───┘

Nous utilisons l'API list ( ajoute des éléments au début d'une liste) pour créer une structure contenant [ x , y , c , q ], où x est la coordonnée x du centre horizontal du diamant, y est le y- coordonnée de la ligne de base, c est la lettre et q est la séquence paresseuse de chaînes. Cette structure sera désormais utilisée pour contenir toutes les étapes intermédiaires.

Ajouter des diamants verticalement

Cette fonction prend une pile de diamants existante, un rayon et un booléen indiquant s'il faut ajouter le nouveau diamant en haut (vrai) ou en bas (faux).

                 ┌─────────────────────────────────────────────────┐
               ┌─┴─╖         ┌───────────────────────────┐ ┌───╖ ┌─┴─╖
           ┌───┤ · ╟─────────┘ ╔═══╗ ┌───────────────┐   ├─┤ ‹ ╟─┤ ‹ ║
           │   ╘═╤═╝           ║ 1 ║ │ ╓───╖         │   │ ╘═╤═╝ ╘═╤═╝
           │     │             ╚═╤═╝ └─╢ ⬗ ╟─┐       │ ┌─┴─╖ │   ┌─┴─╖
           │     │ ┌───╖ ┌───╖ ┌─┴──╖  ╙─┬─╜ │       └─┤ · ╟─┘ ┌─┤ ‹ ╟─┐
           │   ┌─┴─┤ + ╟─┤ ♯ ╟─┤ << ║    │   │         ╘═╤═╝   │ ╘═══╝ │
           │   │   ╘═╤═╝ ╘═══╝ ╘═╤══╝    │ ┌─┴─╖         │     │       │
           │   │   ┌─┴─╖         └───────┴─┤ · ╟───┐   ┌─┴─╖   │       │
           │   └───┤ ? ╟─┐                 ╘═╤═╝ ┌─┴───┤ · ╟─┐ │       │
           │       ╘═╤═╝ ├───────────────────┘   │     ╘═╤═╝ │ │       │
           │ ┌───╖ ┌─┴─╖ │               ┌─────┐ │ ┌───╖ │   │ │       │
           └─┤ › ╟─┤ › ║ │       ┌───╖ ┌─┴─╖   │ └─┤ − ╟─┘   │ │       │
             ╘═╤═╝ ╘═╤═╝ │     ┌─┤ ‼ ╟─┤ ‼ ║   │   ╘═╤═╝     │ │       │
               │   ┌─┴─╖ │     │ ╘═╤═╝ ╘═╤═╝ ┌─┴─╖ ┌─┴─╖     │ │       │
               ┌───┤ · ╟─┘     │ ┌─┴─╖   ├───┤ · ╟─┤ … ║     │ │       │
     ┌───┐     │   ╘═╤═╝       └─┤ · ╟───┘   ╘═╤═╝ ╘═╤═╝     │ │       │
     │ ┌─┴─╖ ┌─┴─╖ ┌─┴─╖         ╘═╤═╝         │  ╔══╧═╗     │ │       │
     │ │ ʭ ╟─┤ ? ╟─┤ › ╟─┐ ╔═══╗ ╔═╧═╕         │  ║ 32 ║     │ │       │
     │ ╘═╤═╝ ╘═╤═╝ ╘═══╝ │ ║ 0 ╟─╢   ├─────────┘  ╚════╝     │ │       │
     │ ┌─┘   ┌─┴─╖       │ ╚═══╝ ╚═╤═╛                       │ │       │
     │ └─┬───┤ ʭ ╟─┐   ┌─┴─╖     ┌─┴─╖                       │ │       │
     │ ┌─┴─╖ ╘═══╝ ├───┤ · ╟─────┤ ɱ ║                       │ │       │
     └─┤ · ╟───────┘   ╘═╤═╝     ╘═╤═╝                       │ │       │
       ╘═╤═╝             │       ┌─┴─╖                       │ │       │
         │               └─────┬─┤ ◇ ╟───────────────────────┘ │       │
         │                     │ ╘═══╝                       ┌─┴─╖     │
         │                     └─────────────────────────────┤ · ╟─────┘
         │                                                   ╘═╤═╝
         └─────────────────────────────────────────────────────┘

C'est aussi assez simple; utiliser pour déballer la structure; utiliser pour générer le nouveau diamant; utilisez ɱ(map) pour ajouter des espaces au début et à la fin de chaque chaîne dans le nouveau losange afin qu'il ait tous la même largeur; ajouter ( ʭ) les nouvelles chaînes sur l'ancienne (si en bas) ou l'ancienne sur la nouvelle (si en haut); et enfin utiliser pour construire la structure contenant toutes les nouvelles valeurs. En particulier, si nous ajoutons vers le bas, y ne change pas, mais si nous ajoutons vers le haut, y doit augmenter de ♯(r << 1)( r est le rayon du nouveau diamant).

Concaténer les piles horizontalement

C'est la plus grande fonction de toutes. Je ne nierai pas qu'il était assez difficile de bien faire les choses. Il prend deux piles et les concatène horizontalement tout en respectant l'alignement vertical correct.

                           ┌──────────────────────────────────┬───────────────────────┐
                           │     ┌──────────────────┐       ┌─┴─╖                   ┌─┴─╖
                           │     │    ┌───────────┐ └───────┤ · ╟───┬───────────────┤ · ╟─────────────┐
                           │     │  ┌─┴─╖         │         ╘═╤═╝   │               ╘═╤═╝             │
                           │     │  │ ‹ ╟───┐     │         ┌─┴─╖ ┌─┴─╖               │               │
                           │     │  ╘═╤═╝ ┌─┴─╖   └─────────┤ · ╟─┤ · ╟─────────┐     │               │
                           │     │    ├─┐ │ ‹ ╟───┐         ╘═╤═╝ ╘═╤═╝         │     │               │
                           │     │    └─┘ ╘═╤═╝ ┌─┴─╖ ╓───╖ ┌─┴─╖   │           │     │               │
                           │     │          │   │ ‹ ╟─╢ ❖ ╟─┤ ‹ ║   │           │     │               │
                           │     │          │   ╘═╤═╝ ╙───╜ ╘═╤═╝ ┌─┴─╖ ┌─┐     │     │               │
                           │     │          │     │           └───┤ ‹ ║ └─┤     │     │               │
                           │     │          │     │               ╘═╤═╝ ┌─┴─╖   │     │               │
                           │     │          │     │                 └───┤ ‹ ║   │     │               │
                           │     │          │     └─────────────────┐   ╘═╤═╝   │     │               │
                           │     │          │                     ┌─┴─╖ ┌─┴─╖ ┌─┴─╖ ┌─┴─╖             │
                           │     │          │      ┌──────────────┤ · ╟─┤ · ╟─┤ · ╟─┤ · ╟──────┐      │
                           │     │          └──────┤              ╘═╤═╝ ╘═╤═╝ ╘═╤═╝ ╘═╤═╝      │      │
                           │   ┌─┴─╖             ┌─┴─╖            ┌─┴─╖   │     │     │        │      │
                           │ ┌─┤ · ╟─────────────┤ · ╟────────────┤ · ╟───┘     │     │        │      │
                           │ │ ╘═╤═╝             ╘═╤═╝            ╘═╤═╝         │     │        │      │
                           │ │   │                 │         ┌────╖ │         ┌─┴─╖   │        │      │
       ╔═══╗ ┌────╖        │ │   │                 │       ┌─┤ << ╟─┴─────────┤ · ╟─┐ │        │      │
       ║ 1 ╟─┤ << ╟────────┘ │   │                 │       │ ╘═╤══╝           ╘═╤═╝ │ │        │      │
       ╚═══╝ ╘═╤══╝ ╔════╗   │   │               ┌─┴─╖     │ ┌─┴─╖              │   │ │     ┌──┴──┐   │
             ┌─┴─╖  ║ 32 ╟─┐ │   │ ┌─────────────┤ · ╟───┐ │ │ ♯ ║              │   │ │   ┌─┴─╖ ┌─┴─╖ │
             │ ♯ ║  ╚════╝ │ │   └─┤ ┌───╖       ╘═╤═╝   │ │ ╘═╤═╝ ┌───╖ ╔════╗ │   │ │ ┌─┤ ? ╟─┤ < ║ │
             ╘═╤═╝   ┌───╖ │ │     └─┤ − ╟─────────┴─┐   │ │   └───┤ … ╟─╢ 32 ║ │   │ │ │ ╘═╤═╝ ╘═╤═╝ │
               └─────┤ … ╟─┘ │       ╘═╤═╝         ┌─┴─╖ │ └───┐   ╘═╤═╝ ╚════╝ │   │ │ │ ┌─┴─╖   ├───┘
                     ╘═╤═╝   │ ┌───╖ ┌─┴─╖ ┌───────┤ · ╟─┴─┐ ╔═╧═╗ ┌─┴─╖ ┌──────┘   │ │ └─┤ · ╟───┘
                       │   ┌─┴─┤ ʭ ╟─┤ ȶ ║ │ ┌───╖ ╘═╤═╝   │ ║ 1 ║ │ ⁞ ║ │ ┌────────┘ │   ╘═╤═╝
                     ┌─┴─╖ │   ╘═╤═╝ ╘═╤═╝ └─┤ > ╟───┴─┐   │ ╚═══╝ ╘═╤═╝ │ │   ┌──────┘     └────┐
                     │ ⁞ ║ │   ┌─┴─╖ ┌─┴─╖   ╘═╤═╝     │ ┌─┴─╖ ┌───╖ │   │ │ ┌─┴─╖ ┌───╖ ┌───╖ ┌─┴─╖
                     ╘═╤═╝ └───┤ ? ╟─┤ · ╟─────┴─┐     │ │ − ╟─┤ ȶ ╟─┴─┐ │ │ │ + ╟─┤ ♯ ╟─┤ › ╟─┤ › ║
                     ┌─┴─╖     ╘═╤═╝ ╘═╤═╝       │     │ ╘═╤═╝ ╘═╤═╝   │ │ │ ╘═╤═╝ ╘═══╝ ╘═╤═╝ ╘═╤═╝
┌────────────────────┤ · ╟───────┴───┐ └─┐     ┌─┴─╖   └───┘   ┌─┴─╖   │ │ └───┘           │     │
│                    ╘═╤═╝         ┌─┴─╖ │   ┌─┤ · ╟───────────┤ · ╟───┘ │                       │
│ ┌────────────────┐   │   ┌───────┤ · ╟─┘   │ ╘═╤═╝           ╘═╤═╝     │                       │
│ │ ╔════╗ ┌───╖ ┌─┴─╖ └───┤ ┌───╖ ╘═╤═╝     │   │               │     ┌─┴───┐                   │
│ │ ║ 32 ╟─┤ ‼ ╟─┤ · ╟───┐ └─┤ ʭ ╟───┘       │   │             ┌─┴─╖ ┌─┴─╖ ┌─┴─╖                 │
│ │ ╚════╝ ╘═╤═╝ ╘═╤═╝   │   ╘═╤═╝     ┌─────┘   │             │ ʭ ╟─┤ · ╟─┤ ? ╟─┐               │
│ │        ┌─┴─╖ ╔═╧═╕ ╔═╧═╕ ┌─┴─╖   ┌─┴─╖       │             ╘═╤═╝ ╘═╤═╝ ╘═╤═╝ │               │
│ │        │ ‼ ╟─╢   ├─╢   ├─┤ ʑ ╟───┤ ʭ ║     ┌─┴─╖             └─────┘     │   │               │
│ │        ╘═╤═╝ ╚═╤═╛ ╚═╤═╛ ╘═╤═╝   ╘═╤═╝ ┌───┤ · ╟─────────────────────────┘   │               │
│ └──────────┘     │   ╔═╧═╗   │       ├───┘   ╘═╤═╝                             │               │
│                  └───╢ 0 ║ ┌─┴─╖   ┌─┴─╖       └───────────────────────────────┘             ┌─┴─╖ ╔═══╗
│                      ╚═══╝ │ ȶ ╟───┤ · ╟─────────────────────────────────────────────────────┤ › ╟─╢ 0 ║
│                            ╘═╤═╝   ╘═╤═╝                                                     ╘═══╝ ╚═══╝
│                            ┌─┴─╖   ┌─┴─╖
│                      ┌─────┤ ? ╟─┐ │ ɕ ║
│                    ┌─┴─╖   ╘═╤═╝ │ ╘═╤═╝
│            ┌───╖ ┌─┤ < ╟───┬─┘   │   │
└────────────┤ ɕ ╟─┤ ╘═══╝ ┌─┴─╖   │   │
             ╘═══╝ └───────┤ · ╟───┘   │
                           ╘═╤═╝       │
                             └─────────┘

Voici comment ça fonctionne.

  • Tout d'abord, pour chaque pile, générez une séquence infinie ( ) de chaînes, chacune contenant des espaces ( ) en fonction de la largeur de cette pile.

  • Les valeurs y des piles nous indiquent laquelle doit «descendre» et de combien. Ajoutez la séquence d'espace appropriée, tronquée ( ȶ) à la bonne longueur ( y1 - y2 ou y2 - y1 selon le cas).

  • Déterminez maintenant la longueur de chacune des séquences de chaînes ( ɕ), qui nous indique leur hauteur. Découvrez lequel est le plus grand.

  • Ajoutez les séquences d'espace infini aux deux piles.

  • Utilisez zip ( ʑ) pour les assembler. Pour chaque paire de cordes, concaténez-les ( ) avec un espace supplémentaire entre les deux.

  • Utilisez ensuiteȶ pour tronquer le résultat à la hauteur la plus élevée. En faisant cela tard, nous n'avons pas à nous soucier de savoir lequel d'entre eux a besoin du rembourrage.

Enfin, générez à nouveau la structure. À ce stade, nous n'avons plus besoin du caractère dans les diamants, nous le mettons donc à 0. La valeur x est simplement additionnée et incrémentée (afin que la largeur de la pile puisse toujours être calculée comme ♯(x << 1)). La valeur y est définie sur la plus élevée des deux.

Itérer sur les caractères d'une chaîne

Ceci est une autre fonction utile que j'ajouterai à la bibliothèque. Étant donné une chaîne, il vous donne une séquence paresseuse contenant chaque code de caractère.

                                        ╓───╖
                                        ║ ↯ ║
                                        ╙─┬─╜
                           ┌──────────────┴────────────────┐
                           │      ┌─┐          ╔═══╗ ┌───╖ │
                           │      └─┤     ┌────╢ 0 ╟─┤ ≠ ╟─┴─┐
                    ┌──────┴─┐ ┌┐ ╔═╧═╕ ┌─┴─╖  ╚═══╝ ╘═╤═╝   │
                    │        ├─┤├─╢   ├─┤ ? ╟──────────┤     │
                    │        │ └┘ ╚═╤═╛ ╘═╤═╝ ╔════╗ ┌─┴─╖   │
                    │ ╔══════╧══╗ ┌─┴─╖   │   ║ −1 ╟─┤ ≠ ╟───┘
                    │ ║ 2097151 ║ │ ↯ ║       ╚════╝ ╘═══╝
                    │ ╚═════════╝ ╘═╤═╝
                    │             ┌─┴──╖ ╔════╗
                    └─────────────┤ >> ╟─╢ 21 ║
                                  ╘════╝ ╚════╝

andune chaîne avec 2097151 renvoie le premier caractère. >>le supprimer par 21 le supprime. Nous vérifions à la fois 0 et −1 pour une raison expliquée dans la page esolangs ; ce n'est pas pertinent pour ce défi, mais je veux que la fonction de bibliothèque soit correcte.

Convertir le personnage en pile de diamants

Cette fonction prend un seul caractère et renvoie la structure de la pile verticale représentant ce caractère.

                                   ╔════╗
                                   ║ 96 ║  ╓───╖
                                   ╚══╤═╝  ║ ⬖ ║
                        ┌───╖ ┌───╖ ┌─┴─╖  ╙─┬─╜
                    ┌───┤ ɗ ╟─┤ Ḟ ╟─┤ − ║    │
                    │   ╘═╤═╝ ╘═══╝ ╘═╤═╝    │
                    │   ┌─┴─╖         ├──────┘  ┌──┐
                    │   │ ɹ ║         │     ┌───┤  │
                    │   ╘═╤═╝   ┌─────┘     │   │  │
                  ╔═╧═╗ ┌─┴─╖ ┌─┴─╖         │  ┌┴┐ │
                  ║ 1 ╟─┤   ╟─┤ · ╟─────┐ ╔═╧═╕└┬┘ │
                  ╚═══╝ └─┬─╜ ╘═╤═╝   ┌─┴─╢   ├─┘ ┌┴┐
            ┌───────────┐ │     └─┐   │   ╚═╤═╛   └┬┘
          ┌─┴─╖         │ │ ┌───╖ │   └─┐ ╔═╧═╕ ┌──┴─╖ ╔═══╗
    ┌─────┤ · ╟───┐     │ └─┤ ◆ ╟─┘   ┌─┴─╢   ├─┤ << ╟─╢ 1 ║
 ┌──┴─┐   ╘═╤═╝   │     │   ╘═╤═╝     │   ╚═╤═╛ ╘════╝ ╚═╤═╝
 │ ┌──┴─╖ ┌─┴─╖ ╔═╧═╕ ╔═╧═╕ ┌─┴─╖   ┌─┴─╖ ┌─┴─╖        ┌─┴─╖
 │ │ >> ╟─┤ ⬗ ╟─╢   ├─╢   ├─┤ ʩ ╟───┤ · ╟─┤ ʑ ╟────────┤ ⸗ ║
 │ ╘══╤═╝ ╘═╤═╝ ╚═╤═╛ ╚═╤═╛ ╘═╤═╝   ╘═╤═╝ ╘═╤═╝        ╘═╤═╝
 │  ╔═╧═╗  ┌┴┐    │   ╔═╧═╗   │       └─────┘          ╔═╧═╗
 │  ║ 1 ╟─┐└┬┘    └───╢ 0 ║                            ║ 0 ║
 │  ╚═══╝ ├─┘         ╚═══╝                            ╚═══╝
 └────────┘

Cette fonction est intéressante car nous avions besoin que les diamants soient ajoutés alternativement en bas et en haut. Voici comment je l'ai fait:

  • Tout d'abord, soustrayez 96 ( 'a'devient ainsi 1), obtenez les facteurs premiers ( ci-dessus), utilisez ɗpour ajouter l'élément 1 si la séquence est vide, puis inversez ( ɹ) l'ordre.

  • Retirez le premier élément et appelez pour relancer la pile.

  • Maintenant, utilisez pour générer une séquence paresseuse qui alterne simplement les nombres 0 et 1 indéfiniment.

  • Utilisez ʑ(zip) là-dessus et les autres facteurs premiers. Pour chaque facteur premier, déplacez-le vers la gauche de 1 et orle 0/1 dessus. Nous avons maintenant une séquence qui code les nombres premiers et les informations haut / bas.

  • Enfin, utilisez ʩ(plier à gauche / agréger). La valeur initiale est la pile que nous avons générée à partir du premier élément ci-dessus. Pour chaque valeur ν , appelez (ajoutez un nouveau losange) avec la pile précédente, le prime ( ν >> 1) et si haut ou bas ( ν & 1).

⑨ Programme principal

Ici, nous faisons le travail principal.

                       ┌─────┐
                       │   ┌─┴─╖
                       │   │ ⬖ ║
               ╔═══╗ ╔═╧═╕ ╘═╤═╝
               ║ 0 ╟─╢   ├───┘
               ╚═╤═╝ ╚═╤═╛ ┌───╖ ┌───╖ ╔═══╗
                 └─┐   └───┤ ɱ ╟─┤ ↯ ╟─╢   ║
       ┌─────────┐ └─────┐ ╘═╤═╝ ╘═══╝ ╚═══╝
       │       ┌─┴─╖     │ ┌─┴─╖
       │   ┌───┤ · ╟───┐ └─┤   ╟─┐
       │   │   ╘═╤═╝   │   └─┬─╜ │
       │ ┌─┴─╖ ╔═╧═╕ ╔═╧═╕ ┌─┴─╖ │
       │ │ ❖ ╟─╢   ├─╢   ├─┤ ʩ ╟─┘
       │ ╘═╤═╝ ╚═╤═╛ ╚═╤═╛ ╘═╤═╝
       └───┘   ╔═╧═╗   │   ┌─┴─╖ ┌─┐
               ║ 0 ╟───┘ ┌─┤ ‹ ╟─┴─┘
               ╚═══╝     │ ╘═══╝
                       ┌─┴─╖ ┌─┐
                     ┌─┤ ‹ ╟─┴─┘
                     │ ╘═══╝
      ╔════╗ ┌───╖ ┌─┴─╖ ┌─┐
      ║ 10 ╟─┤ ʝ ╟─┤ ‹ ╟─┴─┘
      ╚════╝ ╘═╤═╝ ╘═══╝
               │

Tout d'abord, mappez ( ɱ) sur les caractères de la chaîne d'entrée ( ) et transformez chacun en une pile de losanges en utilisant . Retirez le premier élément de celui-ci et repliez ( ʩ) sur le reste pour les concaténer tous ( ). Enfin, décompressez la structure à l'aide de pour accéder à la séquence de chaînes et joignez-les toutes ( ʝ) en utilisant 10 (la nouvelle ligne) comme séparateur.

Exemple de sortie

Contribution:

crusaders

Sortie (il a fallu 9 secondes pour calculer; impossible de publier ici en raison de la taille limite).

Timwi
la source