Le défi du code étoilé

21

Le drapeau des États-Unis d'Amérique contient, dans son canton, 50 étoiles, représentant les 50 États.

Drapeau américain 50 étoiles

Dans le passé, quand il y avait moins d'états, il y avait bien sûr moins d'étoiles et elles étaient disposées différemment. Par exemple, de 1912 à 1959 (après l'admission du Nouveau-Mexique et de l'Arizona mais avant l'Alaska), il y avait 48 étoiles dans un arrangement rectangulaire 6 × 8.

Drapeau américain 48 étoiles

Le drapeau à 37 étoiles utilisé de 1867 à 1877 (après l'admission du Nebraska mais avant le Colorado) avait un motif d'étoile asymétrique.

Drapeau américain 37 étoiles

Dans le cas où un 51e État serait ajouté à l'avenir, l'Army Institute of Heraldry a déjà développé une conception préliminaire pour un nouveau drapeau.

Drapeau américain 51 étoiles

Mais il n'y a pas d' algorithme général pour organiser les étoiles, alors faisons-en un!

Le défi

Écrivez un programme qui, pour un nombre donné d'étoiles à placer dans le canton (partie bleue) d'un drapeau américain, produira des coordonnées optimales auxquelles placer ces étoiles. Le système de coordonnées est défini avec le canton [ pas le drapeau dans son ensemble] avec 0≤x≤W et 0≤y≤H.

Aux fins de ce défi, un arrangement «optimal» est défini comme un arrangement qui minimise la distance moyenne (euclidienne) entre un point du canton et le centre de l'étoile la plus proche.

Un algorithme simple (si peut-être sous-optimal) pour approximer cette valeur est:

def mean_distance_to_nearest_star(stars, width, height, point_density=100):
   """
   Approximate the mean distance between a point in the rectangle
   0 < x < width and 0 < y < height, and the nearest point in stars.

   stars -- list of (x, y) points
   width, height -- dimensions of the canton
   """
   total = 0.0
   nx = round(width * point_density)
   ny = round(height * point_density)
   for ix in range(nx):
       x = (ix + 0.5) * width / nx
       for iy in range(ny):
          y = (iy + 0.5) * width / ny
          min_dist = float('inf')
          for sx, sy in stars:
              min_dist = min(min_dist, math.hypot(x - sx, y - sy))
          total += min_dist
   return total / (nx * ny)

Votre programme doit prendre trois arguments de ligne de commande (sans compter le nom du programme lui-même):

  1. Le nombre d'étoiles à mettre dans le canton.
  2. La largeur du canton. (Doit accepter des valeurs à virgule flottante.)
  3. La hauteur du canton. (Doit accepter des valeurs à virgule flottante.)

(Si votre langage de programmation préféré ne prend pas en charge les arguments de ligne de commande, faites quelque chose d'assez équivalent et documentez-le dans votre réponse.)

La sortie doit être constituée de valeurs X et Y séparées par des virgules, une par ligne. (L'ordre des points n'a pas d'importance.)

Par exemple:

~$ flagstar 5 1.4 1.0
0.20,0.20
0.20,0.80
0.70,0.50
1.20,0.20
1.20,0.80

Règles et notes supplémentaires

  • J'ai le droit de combler à tout moment les lacunes dans les règles.
  • La date limite de réponse est le vendredi 4 juillet à 24h00 CDT (UTC-05: 00). Faute de réponses, le délai a été prolongé. TBA.
  • Incluez dans votre réponse:
    • Le code de votre programme
    • Une explication de son fonctionnement
    • Sa sortie avec les arguments de ligne de commande 50 1.4 1.0
  • Votre programme doit s'exécuter dans un délai raisonnable: au maximum 5 min sur un PC type. Je ne serai pas ultra-strict à ce sujet, mais disqualifierai votre programme si cela prend des heures .
  • Votre programme doit être déterministe, c'est-à-dire toujours donner exactement la même sortie pour les mêmes arguments. Donc, ne dépendez pas de time()ou rand(). Les méthodes de Monte Carlo sont OK tant que vous lancez votre propre PRNG.
  • Seuls les points centraux des étoiles comptent. Ne vous inquiétez pas d'essayer d'éviter le chevauchement ou quelque chose comme ça.

Notation

  • Minimisez la distance moyenne d'un point du canton à l'étoile la plus proche. (Voir au dessus.)
  • Vous pouvez être noté sur la base de n'importe quel drapeau américain historique, entre 13 et 50 étoiles. L'algorithme exact de pondération des scores dans un seul classement sera publié ultérieurement.
  • En cas d'égalité, le gagnant sera choisi en fonction du nombre de votes positifs.
  • Je publierai probablement mon propre programme, mais je m'exclurai d'être éligible à la coche.
dan04
la source
@primo: Comment voyez-vous cela? Mon exemple a une distance moyenne à l'étoile la plus proche de 0,289, alors que placer les 5 points au centre a un MDNS de 0,561.
dan04
Vous pouvez ignorer mon commentaire précédent. J'ai mal lu la distance moyenne de chaque point du canton à l'étoile la plus proche, comme la distance moyenne de chaque étoile à l'étoile la plus proche.
primo
3
N'hésitez pas à inclure jsfiddle.net/nf2mk2gr comme extrait de pile dans la question pour vérifier la sortie des réponses, si elle répond à votre approbation. Il affiche la distance moyenne basée sur une grille N par N, avec N augmentant progressivement plus vous attendez. (Il a été écrit spécifiquement pour cette question.)
trichoplax

Réponses:

4

Javascript - déplace les étoiles vers le point le plus isolé

(avec une animation du processus)

L'approche est très simple:

  • choisissez un grand nombre de points aléatoires
  • trouver l'étoile la plus proche de chaque
  • choisir le point pour lequel l'étoile la plus proche est la plus éloignée
  • déplacer cette étoile plus près de ce point

Ce processus est répété un grand nombre de fois, diminuant progressivement la quantité de déplacement des étoiles. Cela réduit la distance maximale d'un point à l'étoile la plus proche, réduisant indirectement la distance moyenne d'un point à l'étoile la plus proche.

Comme l'exige la question, cela n'utilise pas la fonction aléatoire intégrée, mais plutôt xorshift .

Une grande partie du code couvre la configuration et l'animation - la partie qui applique l'algorithme est la fonction adjustStars.

Code

Vous pouvez voir le processus en cours dans l'extrait de pile ci-dessous.

stars = [];
timeoutId = 0;

resetRandomNumberGenerator();

function resetRandomNumberGenerator() {
  rng_x = 114; // Numbers for the random number generator.
  rng_y = 342;
  rng_z = 982;
  rng_w = 443;
}

$(document).ready(function() {
  c = document.getElementById('canton');
  ctx = c.getContext('2d');
  resizeCanvas();
});

function stop() {
  clearTimeout(timeoutId);
}

function arrange() {
  clearTimeout(timeoutId);
  resetStars();
  resetRandomNumberGenerator();
  maxStepSize = Math.min(cantonWidth, cantonHeight) / 4;
  adjustStars(maxStepSize, 8000, 10000);
}

function resizeCanvas() {
  cantonWidth = parseFloat($('#width').val());
  cantonHeight = parseFloat($('#height').val());
  starRadius = cantonHeight / 20;
  document.getElementById('canton').width = cantonWidth;
  document.getElementById('canton').height = cantonHeight;
  ctx.fillStyle = 'white';
  resetStars();
}

function resetStars() {
  stop();
  stars = [];
  population = parseInt($('#stars').val(), 10);
  shortSide = Math.floor(Math.sqrt(population));
  longSide = Math.ceil(population / shortSide);
  if (cantonWidth < cantonHeight) {
    horizontalStars = shortSide;
    verticalStars = longSide;
  } else {
    horizontalStars = longSide;
    verticalStars = shortSide;
  }
  horizontalSpacing = cantonWidth / horizontalStars;
  verticalSpacing = cantonHeight / verticalStars;
  for (var i = 0; i < population; i++) {
    x = (0.5 + (i % horizontalStars)) * horizontalSpacing;
    y = (0.5 + Math.floor(i / horizontalStars)) * verticalSpacing;
    stars.push([x, y]);
  }
  drawStars();
  updateOutputText();
}

function adjustStars(stepSize, maxSteps, numberOfPoints) {
  $('#stepsRemaining').text(maxSteps + ' steps remaining');
  points = randomPoints(numberOfPoints);
  mostIsolatedPoint = 0;
  distanceToNearestStar = 0;
  for (var i = 0; i < numberOfPoints; i++) {
    point = points[i];
    x = point[0];
    y = point[1];
    star = stars[nearestStar(x, y)];
    d = distance(x, y, star[0], star[1]);
    if (d > distanceToNearestStar) {
      distanceToNearestStar = d;
      mostIsolatedPoint = i;
    }
  }
  point = points[mostIsolatedPoint];
  x = point[0];
  y = point[1];

  starToMove = nearestStar(x, y);

  star = stars[starToMove];
  separationX = x - star[0];
  separationY = y - star[1];
  if (separationX || separationY) {
    hypotenuse = distance(x, y, star[0], star[1]);
    currentStep = Math.min(stepSize, hypotenuse / 2);
    deltaX = currentStep * separationX / hypotenuse;
    deltaY = currentStep * separationY / hypotenuse;
    star[0] += deltaX;
    star[1] += deltaY;
    if (star[0] < 0) star[0] = 0;
    if (star[0] > cantonWidth) star[0] = cantonWidth;
    if (star[1] < 0) star[1] = 0;
    if (star[1] > cantonHeight) star[1] = cantonHeight;

    drawStars();
    updateOutputText();
  }

  if (maxSteps > 0) {
    timeoutId = setTimeout(adjustStars, 10, stepSize * 0.9992, maxSteps - 1, numberOfPoints);
  }
}

function updateOutputText() {
  starText = '';
  for (var i = 0; i < stars.length; i++) {
    starText += stars[i][0] + ', ' + stars[i][1] + '\n';
  }
  $('#coordinateList').text(starText);
}

function randomPoints(n) {
  pointsToReturn = [];
  for (i = 0; i < n; i++) {
    x = xorshift() * cantonWidth;
    y = xorshift() * cantonHeight;
    pointsToReturn.push([x, y]);
  }
  return pointsToReturn;
}

function xorshift() {
  rng_t = rng_x ^ (rng_x << 11);
  rng_x = rng_y;
  rng_y = rng_z;
  rng_z = rng_w;
  rng_w = rng_w ^ (rng_w >> 19) ^ rng_t ^ (rng_t >> 8);
  result = rng_w / 2147483648
  return result
}

function nearestStar(x, y) {
  var distances = [];
  for (var i = 0; i < stars.length; i++) {
    star = stars[i];
    distances.push(distance(x, y, star[0], star[1]));
  }
  minimum = Infinity;
  for (i = 0; i < distances.length; i++) {
    if (distances[i] < minimum) {
      minimum = distances[i];
      nearest = i;
    }
  }
  return nearest;
}

function distance(x1, y1, x2, y2) {
  var x = x2 - x1;
  var y = y2 - y1;
  return Math.sqrt(x * x + y * y);
}

function drawStars() {
  ctx.clearRect(0, 0, cantonWidth, cantonHeight);
  for (i = 0; i < stars.length; i++) {
    star = stars[i];
    x = star[0];
    y = star[1];
    drawStar(x, y);
  }
}

function drawStar(x, y) {
  ctx.beginPath();
  ctx.moveTo(x, y - starRadius);
  ctx.lineTo(x - 0.588 * starRadius, y + 0.809 * starRadius);
  ctx.lineTo(x + 0.951 * starRadius, y - 0.309 * starRadius);
  ctx.lineTo(x - 0.951 * starRadius, y - 0.309 * starRadius);
  ctx.lineTo(x + 0.588 * starRadius, y + 0.809 * starRadius);
  ctx.fill();
}
canvas {
  margin: 0;
  border: medium solid gray;
  background-color: blue;
}
<script src="https://ajax.googleapis.com/ajax/libs/jquery/2.1.0/jquery.min.js"></script>
<input id='stars' onchange='resetStars()' type='number' value='13' min='13' max='50' maxlength='2' step='1'>stars
<br>
<input id='width' onchange='resizeCanvas()' type='number' value='494' min='1' max='500' maxlength='3' step='any'>width
<br>
<input id='height' onchange='resizeCanvas()' type='number' value='350' min='1' max='500' maxlength='3' step='any'>height
<br>
<button type='button' onclick='resetStars()'>Reset Stars</button>
<button type='button' onclick='arrange()'>Arrange Stars</button>
<button type='button' onclick='stop()'>Stop</button>
<textarea id='stepsRemaining' rows='1' readonly></textarea>
<br>
<canvas id='canton' width='494' height='350'></canvas>
<br>
<textarea id='coordinateList' rows='50' cols='40' readonly></textarea>

Sortie pour 50 étoiles

(largeur = 1,4, hauteur = 1,0)

Distance moyenne estimée à 0,0655106697162357.

Coordonnées:

0.028377044205135808, 0.2128159150679491
0.10116766857540277, 0.05156676609341312
0.2903566419069437, 0.07216263690037035
0.49154061258041604, 0.004436102736309105
0.6930026352073071, 0.07060477929576484
1.0988644764108417, 0.022979778480838074
1.1735677936511582, 0.18600858289592742
1.3056806950504931, 0.062239869036660435
0.3967626880807638, 0.24483447327177033
0.27004118129346155, 0.40467589936498805
0.4996665039421278, 0.13023282430440133
0.5148978532656602, 0.6161298793146592
0.5907056537744844, 0.2614323599301046
0.8853042432872087, 0.048123917861564044
0.7753680330575412, 0.22938793622044834
1.365432954694329, 0.2355377720528128
0.1985172068244217, 0.23551298706793927
0.4477558465270544, 0.4170264112485973
0.6084424566752479, 0.7764909501169484
0.6099528761580699, 0.4395002434593519
0.9506038166406011, 0.34903243854585914
1.1898331497634231, 0.5756784243472182
1.0933574395540542, 0.46422120794648786
1.1516574254138159, 0.2930213338333888
0.07646053006349718, 0.40665000611360175
0.0634456093015551, 0.5853189455014883
0.3470036636019768, 0.5938838331082922
0.7591083341283029, 0.4005456925638841
0.9745306853981277, 0.184624209972443
1.3552011948311598, 0.549607060691302
1.3334000268566828, 0.7410204535471169
1.2990417572304487, 0.39571229988825735
0.05853941030364222, 0.7734808757471414
0.19396697551982484, 0.5678753467094985
0.7103231124251072, 0.5955041661956884
0.6168410756137566, 0.948561537739087
0.8967624790188228, 0.5368666961690878
0.9751229155529001, 0.8323724819557795
0.9987127931392165, 0.652902038374714
1.3231032600971289, 0.9164326184290812
0.20785221980162555, 0.7566700629874374
0.3987967842137651, 0.7678025218448816
0.44395949605458546, 0.9137553802571048
0.775611700149756, 0.9029717946067138
0.806442448003616, 0.7328147396477286
0.9481952441521928, 0.9872963855418118
1.1528689317425114, 0.9346775634274639
1.1651295140721658, 0.7591158327925681
0.09316709042512515, 0.934205211493484
0.2769325337580081, 0.9341145493466471
trichoplax
la source
Après avoir exécuté votre animation avec différents nombres d'étoiles, il semble qu'elle a tendance à placer les étoiles près des bords de la boîte. Cependant, ne connaissant pas le véritable arrangement optimal, je ne peux pas dire s'il s'agit d'un bogue ou d'une fonctionnalité.
dan04
@ dan04 ni moi - j'ai une idée de pourquoi cela se produit cependant. Les étoiles près du bord sont trop proches de lui pour qu'il y ait une probabilité significative qu'elles se déplacent vers lui (les étoiles se déplacent principalement vers les points les plus isolés, pas les points à proximité). Mais ils peuvent toujours se déplacer vers le bord indirectement, en alternant entre se déplacer vers deux points éloignés près du bord, résultant en un chemin en zigzag. Je soupçonne que cela signifie qu'il est nécessaire d'avoir des étoiles près des bords, mais j'ai hâte de voir une autre approche pour voir si cela partage le bug / la fonctionnalité ...
trichoplax
@ dan04 ma deuxième réponse semble montrer que les étoiles n'ont pas besoin d'être aussi près des bords que je le pensais, et donne de meilleurs résultats que ma première réponse. Travailler directement avec la moyenne plutôt qu'indirectement à travers le maximum s'avère plus efficace.
trichoplax
3

Voici un exemple simple. Il organise toujours les étoiles dans une grille rectangulaire et l'optimise en choisissant la factorisation dans laquelle les cellules de la grille sont aussi proches que possible du carré. Cela fonctionne très bien lorsque le nombre d'étoiles a un diviseur proche de sa racine carrée, et pessimement lorsque le nombre d'étoiles est premier.

from __future__ import division
import math
import sys

def divisors(n):
    """
    Return all divisors of n (including n itself) as a set.
    """
    result = {1, n}
    # Use +2 instead of +1 to allow for floating-point error.
    for i in range(2, int(math.sqrt(n)) + 2):
        if n % i == 0:
            result.add(i)
            result.add(n // i)
    return result

def squareness(width, height):
    """
    Given the dimensions of a rectangle, return a value between 0 and 1
    (1 iff width == height) measuring how close it is to being a square.
    """
    if width and height:
        return min(width / height, height / width)
    else:
        return 0.0

def star_grid(num_stars, width, height):
    """
    Return the factors (x, y) of num_stars that optimize the mean
    distance to the nearest star.
    """
    best_squareness = 0.0
    best_dimensions = (None, None)
    for nx in divisors(num_stars):
        ny = num_stars // nx
        sq = squareness(width / nx, height / ny)
        if sq > best_squareness:
            best_squareness = sq
            best_dimensions = (nx, ny)
    return best_dimensions

def star_coords(num_stars, width, height):
    """
    Return a list of (x, y) coordinates for the stars.
    """
    nx, ny = star_grid(num_stars, width, height)
    for ix in range(nx):
        x = (ix + 0.5) * width / nx
        for iy in range(ny):
            y = (iy + 0.5) * height / ny
            yield (x, y)

def _main(argv=sys.argv):
    num_stars = int(argv[1])
    width = float(argv[2])
    height = float(argv[3])
    for coord in star_coords(num_stars, width, height):
        print('%g,%g' % coord)

if __name__ == '__main__':
    _main()

Sortie pour 50 étoiles

(largeur = 1,4, hauteur = 1,0)

Un rectangle 10 × 5.

0.07,0.1
0.07,0.3
0.07,0.5
0.07,0.7
0.07,0.9
0.21,0.1
0.21,0.3
0.21,0.5
0.21,0.7
0.21,0.9
0.35,0.1
0.35,0.3
0.35,0.5
0.35,0.7
0.35,0.9
0.49,0.1
0.49,0.3
0.49,0.5
0.49,0.7
0.49,0.9
0.63,0.1
0.63,0.3
0.63,0.5
0.63,0.7
0.63,0.9
0.77,0.1
0.77,0.3
0.77,0.5
0.77,0.7
0.77,0.9
0.91,0.1
0.91,0.3
0.91,0.5
0.91,0.7
0.91,0.9
1.05,0.1
1.05,0.3
1.05,0.5
1.05,0.7
1.05,0.9
1.19,0.1
1.19,0.3
1.19,0.5
1.19,0.7
1.19,0.9
1.33,0.1
1.33,0.3
1.33,0.5
1.33,0.7
1.33,0.9
dan04
la source
0

Javascript - déplacez une étoile au hasard si la distance moyenne est réduite

(avec une animation du processus)

Cela ne donne pas une animation aussi chargée que ma première réponse, ayant de longues périodes sans mouvement car les réarrangements potentiels sont testés et rejetés. Cependant, le résultat final a une distance moyenne inférieure, donc cette méthode est une amélioration.

L'approche est toujours très simple:

  • Choisissez une étoile au hasard
  • Déplacez-le sur une distance aléatoire dans une direction aléatoire
  • Si la distance moyenne est réduite, conservez la nouvelle position

Ce processus est répété un grand nombre de fois, diminuant progressivement la quantité de déplacement des étoiles. Le choix aléatoire de la distance à parcourir est biaisé vers des distances plus petites, de sorte que la progression se fait par petites altérations entrecoupées de sauts occasionnels plus importants. Chaque étape prend plus de temps que dans ma première réponse, car la mesure de la distance moyenne est un processus lent qui nécessite l'échantillonnage de tout le canton.

Comme l'exige la question, cela n'utilise pas la fonction aléatoire intégrée, mais plutôt xorshift .

Une grande partie du code couvre la configuration et l'animation - la partie qui applique l'algorithme est la fonction adjustStars.

Code

Vous pouvez voir le processus en cours dans l'extrait de pile ci-dessous.

stars = [];
timeoutId = 0;

resetRandomNumberGenerator();

function resetRandomNumberGenerator() {
  rng_x = 114; // Numbers for the random number generator.
  rng_y = 342;
  rng_z = 982;
  rng_w = 443;
}

$(document).ready(function() {
  c = document.getElementById('canton');
  ctx = c.getContext('2d');
  resizeCanvas();
});

function stop() {
  clearTimeout(timeoutId);
}

function arrange() {
  clearTimeout(timeoutId);
  resetStars();
  resetRandomNumberGenerator();
  maxStepSize = Math.min(cantonWidth, cantonHeight) / 16;
  adjustStars(maxStepSize, 7000, 15000);
}

function resizeCanvas() {
  cantonWidth = parseFloat($('#width').val());
  cantonHeight = parseFloat($('#height').val());
  starRadius = cantonHeight / 20;
  document.getElementById('canton').width = cantonWidth;
  document.getElementById('canton').height = cantonHeight;
  ctx.fillStyle = 'white';
  resetStars();
}

function resetStars() {
  stop();
  stars = [];
  population = parseInt($('#stars').val(), 10);
  shortSide = Math.floor(Math.sqrt(population));
  longSide = Math.ceil(population / shortSide);
  if (cantonWidth < cantonHeight) {
    horizontalStars = shortSide;
    verticalStars = longSide;
  } else {
    horizontalStars = longSide;
    verticalStars = shortSide;
  }
  horizontalSpacing = cantonWidth / horizontalStars;
  verticalSpacing = cantonHeight / verticalStars;
  for (var i = 0; i < population; i++) {
    x = (0.5 + (i % horizontalStars)) * horizontalSpacing;
    y = (0.5 + Math.floor(i / horizontalStars)) * verticalSpacing;
    stars.push([x, y]);
  }
  drawStars();
  updateOutputText();
}

function adjustStars(stepSize, maxSteps, numberOfPoints) {
  $('#stepsRemaining').text(maxSteps + ' steps remaining');
  var points = randomPoints(numberOfPoints);
  currentMean = meanDistance(stars, points);
  potentialStars = shiftedStars(stepSize);
  potentialMean = meanDistance(potentialStars, points);
  if (potentialMean < currentMean) {
    stars = potentialStars;
  }
  drawStars();
  updateOutputText();
  
  if (maxSteps > 0) {
    timeoutId = setTimeout(adjustStars, 10, stepSize * 0.999, maxSteps - 1, numberOfPoints);
  }
}

function shiftedStars(stepSize) {
  shifted = [];
  chosenOne = Math.floor(xorshift() * stars.length);
  for (i = 0; i < stars.length; i++) {
    star = stars[i];
    x = star[0];
    y = star[1];
    if (i === chosenOne) {
      for (n = 0; n < 10; n++) {
        x += xorshift() * stepSize;
        x -= xorshift() * stepSize;
        y += xorshift() * stepSize;
        y -= xorshift() * stepSize;
      }
      if (x < 0) x = 0;
      if (x > cantonWidth) x = cantonWidth;
      if (y < 0) y = 0;
      if (y > cantonHeight) y = cantonHeight;
    }
    shifted.push([x, y]);
  }
  return shifted;    
}

function meanDistance(arrayOfStars, arrayOfPoints) {
  var totalDistance = 0;
  for (i = 0; i < arrayOfPoints.length; i++) {
    point = arrayOfPoints[i];
    x = point[0];
    y = point[1];
    totalDistance += nearestStarDistance(x, y, arrayOfStars);
  }
  return totalDistance / arrayOfPoints.length;
}

function randomPoints(numberOfPoints) {
  var arrayOfPoints = [];
  for (i = 0; i < numberOfPoints; i++) {
    x = xorshift() * cantonWidth;
    y = xorshift() * cantonHeight;
    arrayOfPoints.push([x, y]);
  }
  return arrayOfPoints;
}

function updateOutputText() {
  starText = '';
  for (var i = 0; i < stars.length; i++) {
    starText += stars[i][0] + ', ' + stars[i][1] + '\n';
  }
  $('#coordinateList').text(starText);
}

function xorshift() {
  rng_t = rng_x ^ (rng_x << 11);
  rng_x = rng_y;
  rng_y = rng_z;
  rng_z = rng_w;
  rng_w = rng_w ^ (rng_w >> 19) ^ rng_t ^ (rng_t >> 8);
  result = rng_w / 2147483648
  return result
}

function nearestStarDistance(x, y, starsToUse) {
  var distances = [];
  for (var i = 0; i < stars.length; i++) {
    star = starsToUse[i];
    distances.push(distance(x, y, star[0], star[1]));
  }
  minimum = Infinity;
  for (i = 0; i < distances.length; i++) {
    if (distances[i] < minimum) {
      minimum = distances[i];
    }
  }
  return minimum;
}

function distance(x1, y1, x2, y2) {
  var x = x2 - x1;
  var y = y2 - y1;
  return Math.sqrt(x * x + y * y);
}

function drawStars() {
  ctx.clearRect(0, 0, cantonWidth, cantonHeight);
  for (i = 0; i < stars.length; i++) {
    star = stars[i];
    x = star[0];
    y = star[1];
    drawStar(x, y);
  }
}

function drawStar(x, y) {
  ctx.beginPath();
  ctx.moveTo(x, y - starRadius);
  ctx.lineTo(x - 0.588 * starRadius, y + 0.809 * starRadius);
  ctx.lineTo(x + 0.951 * starRadius, y - 0.309 * starRadius);
  ctx.lineTo(x - 0.951 * starRadius, y - 0.309 * starRadius);
  ctx.lineTo(x + 0.588 * starRadius, y + 0.809 * starRadius);
  ctx.fill();
}
canvas {
  margin: 0;
  border: medium solid gray;
  background-color: blue;
}
<script src="https://ajax.googleapis.com/ajax/libs/jquery/2.1.0/jquery.min.js"></script>
<input id='stars' onchange='resetStars()' type='number' value='13' min='13' max='50' maxlength='2' step='1'>stars
<br>
<input id='width' onchange='resizeCanvas()' type='number' value='494' min='1' max='500' maxlength='3' step='any'>width
<br>
<input id='height' onchange='resizeCanvas()' type='number' value='350' min='1' max='500' maxlength='3' step='any'>height
<br>
<button type='button' onclick='resetStars()'>Reset Stars</button>
<button type='button' onclick='arrange()'>Arrange Stars</button>
<button type='button' onclick='stop()'>Stop</button>
<textarea id='stepsRemaining' rows='1' readonly></textarea>
<br>
<canvas id='canton' width='494' height='350'></canvas>
<br>
<textarea id='coordinateList' rows='50' cols='40' readonly></textarea>

Sortie pour 50 étoiles

(largeur = 1,4, hauteur = 1,0)

Distance moyenne estimée à 0,06402754713808706.

Coordonnées:

0.08147037630270487, 0.07571240182553095
0.24516777356538358, 0.0803538189052793
0.431021735247462, 0.07821284835132788
0.6001163609128221, 0.08278495286739646
0.7668077034213632, 0.0821321119375313
0.941333266969696, 0.08040530195264808
1.1229190363750599, 0.07255685332834291
1.3074771164489858, 0.07681674948141588
0.09227450444336446, 0.2257047798057907
0.33559513774978766, 0.20668611954667682
0.5182463448452704, 0.23841239342827816
0.6630614113293541, 0.26097114328053417
0.821886619004045, 0.23577904321258844
1.012597304977012, 0.23308200382761057
1.174938874706673, 0.22593017096601203
1.3285181935709358, 0.24024108928169902
0.0746772556909648, 0.3920030109869904
0.23006559905554042, 0.3204287339854068
0.4086004105498357, 0.3507788129168045
0.5669847710831315, 0.4371913211100495
0.7399474422203116, 0.41599441829489137
0.9099913571857917, 0.36933063808924294
1.1170137101288482, 0.3905679602615213
1.3037811235560612, 0.3979526346564911
0.09290206345982034, 0.5678420747594305
0.23463227399157258, 0.47552307265325633
0.4042403660145938, 0.5030345851947539
0.6611151741402685, 0.5918138006294138
0.8237963249937061, 0.5663224022272697
0.9812774216782155, 0.5032518469083094
1.146386501309064, 0.570255729516661
1.3185563715676663, 0.5571870810112576
0.07541940949872694, 0.7356649763259809
0.2877585652075202, 0.6321535875762999
0.4952646673275116, 0.6343336480073624
0.6965646728710738, 0.9178076185211137
0.7903485281657828, 0.7508031981325222
0.9774998621426763, 0.6683301268754337
1.1539480102558823, 0.7513836972857155
1.3177199931376755, 0.7245296168327016
0.22215183098388988, 0.7769843436963862
0.4048364942297627, 0.7779653803681718
0.5021290208205218, 0.9254525763987298
0.6058821167972933, 0.7683130432395833
0.8777330967719849, 0.9201076171801651
0.9894820530574747, 0.8172934111543102
1.1143371956097312, 0.9265012354173626
1.3045771339439551, 0.9069856484512913
0.0930066325438706, 0.9157592790749175
0.2959676633891297, 0.9251379492518523
trichoplax
la source