Dessinez la théière Utah

20

La théière Utah , créée à l'origine par Martin Newell, est un objet pratique pour tester des programmes graphiques 3D.

La tâche consiste à créer une image filaire de la théière en projection en perspective. Pour encourager l'idée d'une application de code source , le contrôle de la visualisation et de la caméra peut être isolé et exclu du décompte. C'est ainsi que les paramètres et le fichier d'entrée peuvent être modifiés et le code réutilisé pour générer des images diverses, mais il n'est pas nécessaire de créer un utilitaire à part entière qui accepte des arguments de ligne de commande compliqués ou autres. Un équilibre "pirate" est recherché.

théière filaire

réf. StackOverflow: Comment fonctionnent les correctifs Bézier dans la théière Utah?

Il y a donc trois sous-tâches ici:

  • lire les données de la théière dans leur format d'origine .
  • subdiviser les données de patch en utilisant le fractionnement deCasteljau ou une autre méthode. D'autres méthodes utilisent des matrices de base de Bézier et évaluent les polynômes (références standard, comme Foley et van Dam, Newmann et Sproull), ou les méthodes de base de Bernstein (qui me dépassent toujours).
  • projeter les points en 2D (si la langue ne prend pas en charge la 3D en natif) et dessiner le contour de chaque petit patch vu depuis un point Eye dont la vue est centrée sur un point LookAt et dont l'axe vertical est aligné avec l'axe vertical de la théière (c.-à-d. dessinez-le "debout" d'un joli point de vue).

Si l'on suppose que la lecture des données de texte orienté ligne à partir d' un fichier est peu de mal, ce défi est vraiment obtenir les mains sur avec bicubique données de patch de Bézier.

Étant donné que le simple test normal pour l'abattage de face arrière n'est pas suffisant (les patchs ne sont pas tous orientés vers l'extérieur), aucun retrait de ligne cachée ou de surface n'est nécessaire. En tant que filaire, il devrait bien paraître avec le dos visible. L'apparence peut être améliorée en ajustant la largeur de la ligne en fonction de la distance de l'œil, mais ce n'est pas strictement nécessaire (mes propres programmes ne le font pas).

C'est à la fois et . Les réponses concourant dans le golf devraient inclure un compte comme normal. Mais les soumissions dans des langues inhabituelles sont très encouragées, même si elles ne sont pas particulièrement courtes.

Pour les amateurs de complexité de Kolmogorov, il existe un ensemble de données plus concis où l'ensemble complet peut être reconstruit en ajoutant des rotations et une mise en miroir des correctifs. Et dans A Trip Down the Graphics Pipeline de Jim Blinn , il existe une méthode de génération encore plus concise en utilisant le fait que les correctifs individuels ont des symétries de rotation ou autres. L'ensemble du corps (ou couvercle) peut être décrit par une seule courbe de Bézier qui est tournée autour de l'axe y. Le bec et les poignées peuvent être décrits par les deux courbes de leur profil, puis en sélectionnant les points de contrôle intermédiaires pour approximer une extrusion circulaire.

luser droog
la source
Dois-je inclure le nombre de points du tableau dans mon nombre?
TheDoctor
Je préférerais le voir provenir d'un fichier, ... mais non, pas besoin de compter les données du correctif quelle que soit leur provenance.
luser droog
Je suggérerais de refuser les buildins comme glutSolidTeapotetglutWireTeapot !
Anders Kaseorg
@AndersKaseorg Je pense que j'ai couvert cela en exigeant de lire les données originales. ... Cela dit, j'ai été laxiste dans l'application de cette règle. Une réponse plus valide validerait facilement la coche, même si elle est plus longue.
luser droog du
@luserdroog Imaginez une solution qui lit les données d'origine, les ignore et appelle glutWireTeapot.
Anders Kaseorg

Réponses:

9

Traitement (java), 314 (237 sans contrôle de caméra)

Non compris les définitions de tableau:

void setup(){size(640,480,P3D);}void draw(){background(0);noFill();stroke(255);translate(width/2,height/2,70);scale(30);rotateX(map(mouseX,0,width,0,TWO_PI));rotateY(map(mouseY,0,height,0,TWO_PI));for(int[] p:patches){beginShape();for(int pt:p){vertex(data[pt-1][0],data[pt-1][1],data[pt-1][2]);}endShape(CLOSE);}}

Définitions des tableaux de données:

float [][] data = {{1.4,0.0,2.4},
{1.4,-0.784,2.4},
{0.784,-1.4,2.4},
{0.0,-1.4,2.4},
{1.3375,0.0,2.53125},
{1.3375,-0.749,2.53125},
{0.749,-1.3375,2.53125},
{0.0,-1.3375,2.53125},
{1.4375,0.0,2.53125},
{1.4375,-0.805,2.53125},
{0.805,-1.4375,2.53125},
{0.0,-1.4375,2.53125},
{1.5,0.0,2.4},
{1.5,-0.84,2.4},
{0.84,-1.5,2.4},
{0.0,-1.5,2.4},
{-0.784,-1.4,2.4},
{-1.4,-0.784,2.4},
{-1.4,0.0,2.4},
{-0.749,-1.3375,2.53125},
{-1.3375,-0.749,2.53125},
{-1.3375,0.0,2.53125},
{-0.805,-1.4375,2.53125},
{-1.4375,-0.805,2.53125},
{-1.4375,0.0,2.53125},
{-0.84,-1.5,2.4},
{-1.5,-0.84,2.4},
{-1.5,0.0,2.4},
{-1.4,0.784,2.4},
{-0.784,1.4,2.4},
{0.0,1.4,2.4},
{-1.3375,0.749,2.53125},
{-0.749,1.3375,2.53125},
{0.0,1.3375,2.53125},
{-1.4375,0.805,2.53125},
{-0.805,1.4375,2.53125},
{0.0,1.4375,2.53125},
{-1.5,0.84,2.4},
{-0.84,1.5,2.4},
{0.0,1.5,2.4},
{0.784,1.4,2.4},
{1.4,0.784,2.4},
{0.749,1.3375,2.53125},
{1.3375,0.749,2.53125},
{0.805,1.4375,2.53125},
{1.4375,0.805,2.53125},
{0.84,1.5,2.4},
{1.5,0.84,2.4},
{1.75,0.0,1.875},
{1.75,-0.98,1.875},
{0.98,-1.75,1.875},
{0.0,-1.75,1.875},
{2.0,0.0,1.35},
{2.0,-1.12,1.35},
{1.12,-2.0,1.35},
{0.0,-2.0,1.35},
{2.0,0.0,0.9},
{2.0,-1.12,0.9},
{1.12,-2.0,0.9},
{0.0,-2.0,0.9},
{-0.98,-1.75,1.875},
{-1.75,-0.98,1.875},
{-1.75,0.0,1.875},
{-1.12,-2.0,1.35},
{-2.0,-1.12,1.35},
{-2.0,0.0,1.35},
{-1.12,-2.0,0.9},
{-2.0,-1.12,0.9},
{-2.0,0.0,0.9},
{-1.75,0.98,1.875},
{-0.98,1.75,1.875},
{0.0,1.75,1.875},
{-2.0,1.12,1.35},
{-1.12,2.0,1.35},
{0.0,2.0,1.35},
{-2.0,1.12,0.9},
{-1.12,2.0,0.9},
{0.0,2.0,0.9},
{0.98,1.75,1.875},
{1.75,0.98,1.875},
{1.12,2.0,1.35},
{2.0,1.12,1.35},
{1.12,2.0,0.9},
{2.0,1.12,0.9},
{2.0,0.0,0.45},
{2.0,-1.12,0.45},
{1.12,-2.0,0.45},
{0.0,-2.0,0.45},
{1.5,0.0,0.225},
{1.5,-0.84,0.225},
{0.84,-1.5,0.225},
{0.0,-1.5,0.225},
{1.5,0.0,0.15},
{1.5,-0.84,0.15},
{0.84,-1.5,0.15},
{0.0,-1.5,0.15},
{-1.12,-2.0,0.45},
{-2.0,-1.12,0.45},
{-2.0,0.0,0.45},
{-0.84,-1.5,0.225},
{-1.5,-0.84,0.225},
{-1.5,0.0,0.225},
{-0.84,-1.5,0.15},
{-1.5,-0.84,0.15},
{-1.5,0.0,0.15},
{-2.0,1.12,0.45},
{-1.12,2.0,0.45},
{0.0,2.0,0.45},
{-1.5,0.84,0.225},
{-0.84,1.5,0.225},
{0.0,1.5,0.225},
{-1.5,0.84,0.15},
{-0.84,1.5,0.15},
{0.0,1.5,0.15},
{1.12,2.0,0.45},
{2.0,1.12,0.45},
{0.84,1.5,0.225},
{1.5,0.84,0.225},
{0.84,1.5,0.15},
{1.5,0.84,0.15},
{-1.6,0.0,2.025},
{-1.6,-0.3,2.025},
{-1.5,-0.3,2.25},
{-1.5,0.0,2.25},
{-2.3,0.0,2.025},
{-2.3,-0.3,2.025},
{-2.5,-0.3,2.25},
{-2.5,0.0,2.25},
{-2.7,0.0,2.025},
{-2.7,-0.3,2.025},
{-3.0,-0.3,2.25},
{-3.0,0.0,2.25},
{-2.7,0.0,1.8},
{-2.7,-0.3,1.8},
{-3.0,-0.3,1.8},
{-3.0,0.0,1.8},
{-1.5,0.3,2.25},
{-1.6,0.3,2.025},
{-2.5,0.3,2.25},
{-2.3,0.3,2.025},
{-3.0,0.3,2.25},
{-2.7,0.3,2.025},
{-3.0,0.3,1.8},
{-2.7,0.3,1.8},
{-2.7,0.0,1.575},
{-2.7,-0.3,1.575},
{-3.0,-0.3,1.35},
{-3.0,0.0,1.35},
{-2.5,0.0,1.125},
{-2.5,-0.3,1.125},
{-2.65,-0.3,0.9375},
{-2.65,0.0,0.9375},
{-2.0,-0.3,0.9},
{-1.9,-0.3,0.6},
{-1.9,0.0,0.6},
{-3.0,0.3,1.35},
{-2.7,0.3,1.575},
{-2.65,0.3,0.9375},
{-2.5,0.3,1.125},
{-1.9,0.3,0.6},
{-2.0,0.3,0.9},
{1.7,0.0,1.425},
{1.7,-0.66,1.425},
{1.7,-0.66,0.6},
{1.7,0.0,0.6},
{2.6,0.0,1.425},
{2.6,-0.66,1.425},
{3.1,-0.66,0.825},
{3.1,0.0,0.825},
{2.3,0.0,2.1},
{2.3,-0.25,2.1},
{2.4,-0.25,2.025},
{2.4,0.0,2.025},
{2.7,0.0,2.4},
{2.7,-0.25,2.4},
{3.3,-0.25,2.4},
{3.3,0.0,2.4},
{1.7,0.66,0.6},
{1.7,0.66,1.425},
{3.1,0.66,0.825},
{2.6,0.66,1.425},
{2.4,0.25,2.025},
{2.3,0.25,2.1},
{3.3,0.25,2.4},
{2.7,0.25,2.4},
{2.8,0.0,2.475},
{2.8,-0.25,2.475},
{3.525,-0.25,2.49375},
{3.525,0.0,2.49375},
{2.9,0.0,2.475},
{2.9,-0.15,2.475},
{3.45,-0.15,2.5125},
{3.45,0.0,2.5125},
{2.8,0.0,2.4},
{2.8,-0.15,2.4},
{3.2,-0.15,2.4},
{3.2,0.0,2.4},
{3.525,0.25,2.49375},
{2.8,0.25,2.475},
{3.45,0.15,2.5125},
{2.9,0.15,2.475},
{3.2,0.15,2.4},
{2.8,0.15,2.4},
{0.0,0.0,3.15},
{0.0,-0.002,3.15},
{0.002,0.0,3.15},
{0.8,0.0,3.15},
{0.8,-0.45,3.15},
{0.45,-0.8,3.15},
{0.0,-0.8,3.15},
{0.0,0.0,2.85},
{0.2,0.0,2.7},
{0.2,-0.112,2.7},
{0.112,-0.2,2.7},
{0.0,-0.2,2.7},
{-0.002,0.0,3.15},
{-0.45,-0.8,3.15},
{-0.8,-0.45,3.15},
{-0.8,0.0,3.15},
{-0.112,-0.2,2.7},
{-0.2,-0.112,2.7},
{-0.2,0.0,2.7},
{0.0,0.002,3.15},
{-0.8,0.45,3.15},
{-0.45,0.8,3.15},
{0.0,0.8,3.15},
{-0.2,0.112,2.7},
{-0.112,0.2,2.7},
{0.0,0.2,2.7},
{0.45,0.8,3.15},
{0.8,0.45,3.15},
{0.112,0.2,2.7},
{0.2,0.112,2.7},
{0.4,0.0,2.55},
{0.4,-0.224,2.55},
{0.224,-0.4,2.55},
{0.0,-0.4,2.55},
{1.3,0.0,2.55},
{1.3,-0.728,2.55},
{0.728,-1.3,2.55},
{0.0,-1.3,2.55},
{1.3,0.0,2.4},
{1.3,-0.728,2.4},
{0.728,-1.3,2.4},
{0.0,-1.3,2.4},
{-0.224,-0.4,2.55},
{-0.4,-0.224,2.55},
{-0.4,0.0,2.55},
{-0.728,-1.3,2.55},
{-1.3,-0.728,2.55},
{-1.3,0.0,2.55},
{-0.728,-1.3,2.4},
{-1.3,-0.728,2.4},
{-1.3,0.0,2.4},
{-0.4,0.224,2.55},
{-0.224,0.4,2.55},
{0.0,0.4,2.55},
{-1.3,0.728,2.55},
{-0.728,1.3,2.55},
{0.0,1.3,2.55},
{-1.3,0.728,2.4},
{-0.728,1.3,2.4},
{0.0,1.3,2.4},
{0.224,0.4,2.55},
{0.4,0.224,2.55},
{0.728,1.3,2.55},
{1.3,0.728,2.55},
{0.728,1.3,2.4},
{1.3,0.728,2.4},
{0.0,0.0,0.0},
{1.5,0.0,0.15},
{1.5,0.84,0.15},
{0.84,1.5,0.15},
{0.0,1.5,0.15},
{1.5,0.0,0.075},
{1.5,0.84,0.075},
{0.84,1.5,0.075},
{0.0,1.5,0.075},
{1.425,0.0,0.0},
{1.425,0.798,0.0},
{0.798,1.425,0.0},
{0.0,1.425,0.0},
{-0.84,1.5,0.15},
{-1.5,0.84,0.15},
{-1.5,0.0,0.15},
{-0.84,1.5,0.075},
{-1.5,0.84,0.075},
{-1.5,0.0,0.075},
{-0.798,1.425,0.0},
{-1.425,0.798,0.0},
{-1.425,0.0,0.0},
{-1.5,-0.84,0.15},
{-0.84,-1.5,0.15},
{0.0,-1.5,0.15},
{-1.5,-0.84,0.075},
{-0.84,-1.5,0.075},
{0.0,-1.5,0.075},
{-1.425,-0.798,0.0},
{-0.798,-1.425,0.0},
{0.0,-1.425,0.0},
{0.84,-1.5,0.15},
{1.5,-0.84,0.15},
{0.84,-1.5,0.075},
{1.5,-0.84,0.075},
{0.798,-1.425,0.0},
{1.425,-0.798,0.0}
};

int [][] patches = {
    {32},
{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16},
{4,17,18,19,8,20,21,22,12,23,24,25,16,26,27,28},
{19,29,30,31,22,32,33,34,25,35,36,37,28,38,39,40},
{31,41,42,1,34,43,44,5,37,45,46,9,40,47,48,13},
{13,14,15,16,49,50,51,52,53,54,55,56,57,58,59,60},
{16,26,27,28,52,61,62,63,56,64,65,66,60,67,68,69},
{28,38,39,40,63,70,71,72,66,73,74,75,69,76,77,78},
{40,47,48,13,72,79,80,49,75,81,82,53,78,83,84,57},
{57,58,59,60,85,86,87,88,89,90,91,92,93,94,95,96},
{60,67,68,69,88,97,98,99,92,100,101,102,96,103,104,105},
{69,76,77,78,99,106,107,108,102,109,110,111,105,112,113,114},
{78,83,84,57,108,115,116,85,111,117,118,89,114,119,120,93},
{121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136},
{124,137,138,121,128,139,140,125,132,141,142,129,136,143,144,133},
{133,134,135,136,145,146,147,148,149,150,151,152,69,153,154,155},
{136,143,144,133,148,156,157,145,152,158,159,149,155,160,161,69},
{162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177},
{165,178,179,162,169,180,181,166,173,182,183,170,177,184,185,174},
{174,175,176,177,186,187,188,189,190,191,192,193,194,195,196,197},
{177,184,185,174,189,198,199,186,193,200,201,190,197,202,203,194},
{204,204,204,204,207,208,209,210,211,211,211,211,212,213,214,215},
{204,204,204,204,210,217,218,219,211,211,211,211,215,220,221,222},
{204,204,204,204,219,224,225,226,211,211,211,211,222,227,228,229},
{204,204,204,204,226,230,231,207,211,211,211,211,229,232,233,212},
{212,213,214,215,234,235,236,237,238,239,240,241,242,243,244,245},
{215,220,221,222,237,246,247,248,241,249,250,251,245,252,253,254},
{222,227,228,229,248,255,256,257,251,258,259,260,254,261,262,263},
{229,232,233,212,257,264,265,234,260,266,267,238,263,268,269,242},
{270,270,270,270,279,280,281,282,275,276,277,278,271,272,273,274},
{270,270,270,270,282,289,290,291,278,286,287,288,274,283,284,285},
{270,270,270,270,291,298,299,300,288,295,296,297,285,292,293,294},
{270,270,270,270,300,305,306,279,297,303,304,275,294,301,302,271},
{306}
};

Version plus lisible:

void setup() {
  size(640,480,P3D);
}

void draw() {
  background(0);
  noFill();
  stroke(255);
  translate(width/2,height/2,70);
  scale(30);
  rotateX(map(mouseX,0,width,0,TWO_PI));
  rotateY(map(mouseY,0,height,0,TWO_PI));
  for (int[] p:patches) {
    beginShape();
    for (int pt:p) {
      vertex(data[pt-1][0],data[pt-1][2],data[pt-1][2]);
    }
    endShape(CLOSE); 
  }
}

Et quelques photos:

produit fini

Une autre version avec des effets intéressants:

void setup(){size(640,480,P3D);}
void draw(){
  background(0);noFill();stroke(255);
  translate(width/2,height/2,70);scale(30);
  rotateX(map(mouseX,0,width,0,TWO_PI));rotateY(map(mouseY,0,height,0,TWO_PI));
  for(int[] p:patches){
    //beginShape(QUADS);
    for(int pt:p){
      for(int pu:p){
        //vertex(data[pu-1][0],data[pu-1][4],data[pu-1][2]);
        line(data[pt-1][0],data[pt-1][5],data[pt-1][2],data[pu-1][0],data[pu-1][6],data[pu-1][2]);
    }}
    //endShape(CLOSE);
  }
}

version 2

Le docteur
la source
Je pense qu'il devrait diviser les patchs au moins une fois pour que le bec prenne forme.
luser droog
Oui, la deuxième photo est meilleure. Vous ne faites pas vraiment de subdivision, semble-t-il. Les bords de chaque patch sont des courbes de Bézier ... Même ainsi, +1 On dirait une théière!
luser droog
stroke(-1)est un octet plus court questroke(255)
Kritixi Lithos
11

Postscript

Pas entièrement golfé, mais cela illustre une approche différente de la subdivision deCasteljau: évaluer le polynôme de base. Utilisations mat.ps .

(mat.ps)run[    % load matrix library, begin dictionary construction

/N 17
/C [ 0 7 4 ]   % Cam
/E [ 0 0 40 ] % Eye
/R 0 roty 120 rotx 90 rotz   % Rot: pan tilt twist
          matmul   matmul

/f(teapot)(r)file
/t{token pop exch pop}      % parse a number or other ps token
/s{(,){search not{t exit}if t 3 1 roll}loop}  % parse a comma-separated list
/r{token pop{[f 99 string readline pop s]}repeat}>>begin   % parse a count-prefixed paragraph of csv numbers
[/P[f r]/V[f r]/v{1 sub V exch get}        % Patches and Vertices and vert lookup shortcut
/B[[-1 3 -3 1][3 -6 3 0][-3 3 0 0][1 0 0 0]]              % Bezier basis matrix
/A{dup dup mul exch 2 copy mul 3 1 roll 1 4 array astore} % x->[x^3 x^2 x 1]
/M{[1 index 0 4 getinterval 2 index 4 4 getinterval       % flattened matrix->rowXcolumn matrix
3 index 8 4 getinterval 4 index 12 4 getinterval]exch pop}
/J{ C{sub}vop R matmul 0 get                              % perspective proJection  [x y z]->[X Y]
    aload pop E aload pop
    4 3 roll div exch neg
    4 3 roll add 1 index mul 4 1 roll
    3 1 roll sub mul}
>>begin

300 400 translate
1 14 dup dup scale div currentlinewidth mul setlinewidth  % global scale
/newline { /line {moveto /line {lineto} store} store } def
newline
P{
    8 dict begin
        [exch{v J 2 array astore}forall]/p exch def   % load patch vertices and project to 2D
        /X[p{0 get}forall] M B exch matmul B matmul def  % multiply control points by Bezier basis
        /Y[p{1 get}forall] M B exch matmul B matmul def

        0 1 N div 1 1 index .2 mul add{A/U exch def   % interpolate the polynomial over (u,v)/(N)
            /UX U X matmul def
            /UY U Y matmul def
            0 1 N div 1 1 index .2 mul add{A/V exch 1 array astore transpose def
                /UXV UX V matmul def
                /UYV UY V matmul def
                UXV 0 get 0 get
                UYV 0 get 0 get line
            }for
            newline
        }for

        0 1 N div 1 1 index .2 mul add{A/V exch def   % interpolate the polynomial over (u,v)/(N)
            /V [V] transpose def
            /XV X V matmul def
            /YV Y V matmul def
            0 1 N div 1 1 index .2 mul add{A/U exch 1 array astore transpose def
                /UXV U XV matmul def
                /UYV U YV matmul def
                UXV 0 get 0 get
                UYV 0 get 0 get line
            }for
            newline
        }for

    end

    %exit
}forall
stroke

Théière à base de Bézier

1112

En supprimant les lignes verticales et en actualisant les paramètres, on obtient cette version à 1112 caractères. Utilisations mat.ps .

(mat.ps)run[    % 12

/N 17
/C [ 0 7 4 ]   % Cam 
/E [ 0 0 40 ] % Eye 
/R 0 roty 120 rotx 90 rotz   % Rot: pan tilt twist
          matmul   matmul

/f(teapot)(r)file/t{token pop exch pop}/s{(,){search not{t exit}if t   % 1100
3 1 roll}loop}/r{token pop{[f 99 string readline pop 
s]}repeat}>>begin[/P[f r]/V[f r]/v{1 sub 
V exch get}/B[[-1 3 -3 1][3 -6 3 0][-3 3 0 0][1 0 0 0]]/A{dup dup mul exch
2 copy mul 3 1 roll 1 4 array astore}/M{[1 index 0 4 getinterval 2 index 4 4 getinterval    
3 index 8 4 getinterval 4 index 12 4 getinterval]exch pop}/J{C{sub}vop R matmul 0 get    
aload pop E aload pop 4 3 roll div exch neg 4 3 roll add 1 index mul 4 1 roll
3 1 roll sub mul}>>begin 300 400 translate
1 14 dup dup scale div currentlinewidth mul setlinewidth  
/newline{/line{moveto/line{lineto}store}store}def newline
P{8 dict begin[exch{v J 2 array astore}forall]/p
exch def/X[p{0 get}forall] M B exch matmul B matmul
def/Y[p{1 get}forall] M B exch matmul B matmul def 
0 1 N div 1 1 index .2 mul add{A/U exch def/UX U X matmul def/UY U Y matmul def 
0 1 N div 1 1 index .2 mul add{A/V exch 1 array astore transpose
def/UXV UX V matmul def/UYV UY V matmul def UXV 0 get 0 get UYV 0 get 0 get line}for
newline}for end}forall stroke

Boucles à base de Bézier

luser droog
la source