“Matrice de confusion Python” Réponses codées

Matrice de confusion Python

from sklearn.metrics import confusion_matrix
conf_mat = confusion_matrix(y_test, y_pred)
sns.heatmap(conf_mat, square=True, annot=True, cmap='Blues', fmt='d', cbar=False)
Adventurous Addax

Python Plot_confusion_Matrix

from sklearn.metrics import confusion_matrix
cm = confusion_matrix(test_Y, predictions_dt)
cm
# after creating the confusion matrix, for better understaning plot the cm.
import seaborn as sn
plt.figure(figsize = (10,8))
# were 'cmap' is used to set the accent colour
sn.heatmap(cm, annot=True, cmap= 'flare',  fmt='d', cbar=True)
plt.xlabel('Predicted_Label')
plt.ylabel('Truth_Label')
plt.title('Confusion Matrix - Decision Tree')
Khola GenZ

Matrice de confusion Python

By definition, entry i,j in a confusion matrix is the number of 
observations actually in group i, but predicted to be in group j. 
Scikit-Learn provides a confusion_matrix function:

from sklearn.metrics import confusion_matrix
y_actu = [2, 0, 2, 2, 0, 1, 1, 2, 2, 0, 1, 2]
y_pred = [0, 0, 2, 1, 0, 2, 1, 0, 2, 0, 2, 2]
confusion_matrix(y_actu, y_pred)
# Output
# array([[3, 0, 0],
#        [0, 1, 2],
#        [2, 1, 3]], dtype=int64)
Bored Coder

Code python de matrice de confusion

from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test, y_predicted)
cm
# after creating the confusion matrix, for better understaning plot the cm.
import seaborn as sn
plt.figure(figsize = (10,7))
sn.heatmap(cm, annot=True)
plt.xlabel('Predicted')
plt.ylabel('Truth')
Clumsy Cowfish

Matrice de confusion Python

from sklearn.metrics import accuracy_score
from sklearn.metrics import classification_report, confusion_matrix

print(confusion_matrix(y_test, y_pred_test.round()))
print(classification_report(y_test, y_pred_test.round()))

# Output:
[[99450   250]
 [ 4165 11192]]
              precision    recall  f1-score   support

           0       0.96      1.00      0.98     99700
           1       0.98      0.73      0.84     15357

    accuracy                           0.96    115057
   macro avg       0.97      0.86      0.91    115057
weighted avg       0.96      0.96      0.96    115057
Ruben Visser

Matrice de confusion Python

df_confusion = pd.crosstab(y_actu, y_pred, rownames=['Actual'], colnames=['Predicted'], margins=True)
Bad Bison

Réponses similaires à “Matrice de confusion Python”

Questions similaires à “Matrice de confusion Python”

Plus de réponses similaires à “Matrice de confusion Python” dans Python

Parcourir les réponses de code populaires par langue

Parcourir d'autres langages de code