Exemple de bibliothèque PiGPIO pour Bit-Banging un UART

11

La bibliothèque PiGPIO http://abyz.me.uk/rpi/pigpio/index.html mentionne que l'une de ses fonctionnalités est "les liaisons série logicielles utilisant n'importe quel utilisateur gpio".

Je suppose que cela signifie que vous pouvez l'utiliser pour générer un logiciel UART sur 2 broches GPIO gratuites.

Dans la page d'exemples des projets, il n'y a aucun exemple pour cette fonctionnalité et je n'en ai trouvé aucun sur Google.

Quelqu'un a-t-il fait cela? Si oui, veuillez me montrer l'exemple.

Sinon, existe-t-il des bibliothèques alternatives pour frapper un UART?

Merci,

PhilBot
la source
Voir aussi: raspberrypi.stackexchange.com/questions/3475/… et raspberrypi.stackexchange.com/questions/24019/… On répond à ce dernier par @joan pointant vers pigpio, alors peut-être qu'il pourra offrir un peu plus d'informations.
Ghanima
J'ai passé quelques jours à tester le logiciel pigpio en série en envoyant du Pi vers un ordinateur portable et en faisant revenir l'écho de l'ordinateur portable sur le Pi. Je voulais l'écrire mais les événements ont dépassé cet exercice. Je vais voir ce que je peux trouver.
joan

Réponses:

13

Voici quelques Python que j'ai utilisés pour tester la fiabilité des logiciels en série. Le côté entrée est assez trivial. Vous effectuez simplement les appels ouverts série bang bang appropriés en Python ou C. Le côté sortie est plus impliqué car vous devez utiliser des formes d'onde pour construire le flux binaire.

Le code utilise ici des données 7 bits plutôt que 8 bits. Le test a été écrit à peu près au même moment que j'ajoutais la prise en charge de différents bits par octet.

Le code écrit des blocs de données binaires sur un gpio connecté à un ordinateur portable (via un dongle série). L'ordinateur portable renvoie les données série entrantes sur sa ligne série de sortie. Le Pi lit les données série sur un autre gpio.

Le code vérifie les écarts entre les données envoyées et reçues. L'ordinateur portable est supposé être exempt d'erreurs, donc toutes les erreurs sont supposées être dans le coup de bits.

En regardant les journaux, tout ce qui était inférieur à 19,2 kbps était solide. Quelque chose jusqu'à 115,2 kbps était raisonnable (mais nécessiterait une somme de contrôle) et 230,4 kbps donnait un taux d'erreur de 13% octets.

#!/usr/bin/env python

# bb_serial.py
# 2014-12-23
# Public Domain

# bit bang transmit and receive of serial data
#
# tested by connecting the arbitrary RX/TX gpios to a USB
# serial dongle plugged in to a Linux box.
#
# on the Linux box set the baud and data bits (cs5-cs8)
#
# stty -F /dev/ttyUSB0 19200 cs8
# cat </dev/ttyUSB0 >/dev/ttyUSB0
#
# so the Linux box echoes back data received from the Pi.
#
# laptop timings deviations
#
# baud  exp us   act us
#   50   20000    13310 * 75
#   75   13333    13310
#  110    9091    13310 * 75
#  134    7462     6792 * 150
#  150    6667     6792
#  200    5000     6792 * 150
#  300    3333     3362
#

import sys
import time
import difflib

import pigpio

RX=19
TX=26

MSGLEN=256

if len(sys.argv) > 1:
   baud = int(sys.argv[1])
else:
   baud = 115200

if len(sys.argv) > 2:
   bits = int(sys.argv[2])
else:
   bits = 8

if len(sys.argv) > 3:
   runtime = int(sys.argv[3])
else:
   runtime = 300

ten_char_time = 100.0 / float(baud)

if ten_char_time < 0.1:
   ten_char_time = 0.1

MASK=(1<<bits)-1

# initialise test data

msg = [0] * (MSGLEN+256)

for i in range(len(msg)):
   msg[i] = i & MASK

first = 0

pi = pigpio.pi()

pi.set_mode(TX, pigpio.OUTPUT)

# fatal exceptions off (so that closing an unopened gpio doesn't error)

pigpio.exceptions = False

pi.bb_serial_read_close(RX)

# fatal exceptions on

pigpio.exceptions = True

# create a waveform representing the serial data

pi.wave_clear()

TEXT=msg[first:first+MSGLEN]
pi.wave_add_serial(TX, baud, TEXT)
wid=pi.wave_create()

# open a gpio to bit bang read the echoed data

pi.bb_serial_read_open(RX, baud, bits)

# zero error counts

bad_char = 0
total_char = 0

# run for fixed time

start=time.time()

while (time.time()-start) < runtime:

   pi.wave_send_once(wid)   # transmit serial data
   pi.wave_delete(wid)

   TXTEXT = TEXT

   first += 1
   if first >= MSGLEN:
      first = 0

   TEXT=msg[first:first+MSGLEN]
   pi.wave_add_serial(TX, baud, TEXT,bb_bits=7)

   while pi.wave_tx_busy(): # wait until all data sent
      pass

   wid=pi.wave_create()

   count = 1
   text=""
   lt = 0
   total_char += MSGLEN

   while count: # read echoed serial data
      (count, data) = pi.bb_serial_read(RX)
      if count:
         text += data
         lt += count
      time.sleep(ten_char_time) # enough time to ensure more data

   if text != TXTEXT: # Do sent and received match?
      if lt == MSGLEN: # No, is message correct length?
         for i in range(MSGLEN): # If so compare byte by byte.
            if text[i] != TXTEXT[i]:
               # print("{:2X} {:2X}".format(text[i], TXTEXT[i]))
               bad_char += 1
      else: # Wrong message length, find matching blocks.
         ok = 0
         s=difflib.SequenceMatcher(None, TXTEXT, text)
         for frag in  s.get_matching_blocks():
            ok += frag[2] # More matching bytes found.
            # print(frag)
         # print(text, MSGLEN, ok)
         if ok < MSGLEN: # Sanity check.
            bad_char += (MSGLEN - ok)
         else:
            print("*** ERRONEOUS good={} LEN={} ***".format(ok, MSGLEN))

print("secs={} baud={} bits={} bad={:.3f}%".
   format(runtime, baud, bits, float(bad_char)*100.0/float(total_char)))

print("total={} badchar={}".format(total_char, bad_char))

# free resources

pi.wave_delete(wid)

pi.bb_serial_read_close(RX)

pi.stop()

Journaux

harry /ram $ for ((i=0;i<4;i++)); do /code/bb_serial.py 230400; done
secs=300 baud=230400 bad=12.610%
total=249344 badchar=31443
secs=300 baud=230400 bad=12.580%
total=247296 badchar=31111
secs=300 baud=230400 bad=12.669%
total=246528 badchar=31232
secs=300 baud=230400 bad=12.274%
total=249600 badchar=30635
harry /ram $ for ((i=0;i<4;i++)); do /code/bb_serial.py 115200; done
secs=300 baud=115200 bad=0.378%
total=246784 badchar=934
secs=300 baud=115200 bad=0.152%
total=241408 badchar=368
secs=300 baud=115200 bad=0.189%
total=249088 badchar=472
secs=300 baud=115200 bad=0.347%
total=242688 badchar=843
harry /ram $ for ((i=0;i<4;i++)); do /code/bb_serial.py 57600; done
secs=300 baud=57600 bad=0.080%
total=220416 badchar=177
secs=300 baud=57600 bad=0.066%
total=219392 badchar=145
secs=300 baud=57600 bad=0.099%
total=219904 badchar=218
secs=300 baud=57600 bad=0.084%
total=219136 badchar=184
harry /ram $ for ((i=0;i<4;i++)); do /code/bb_serial.py 38400; done
secs=300 baud=38400 bad=0.019%
total=206336 badchar=39
secs=300 baud=38400 bad=0.021%
total=206848 badchar=43
secs=300 baud=38400 bad=0.015%
total=206592 badchar=30
secs=300 baud=38400 bad=0.030%
total=206592 badchar=61
harry /ram $ for ((i=0;i<4;i++)); do /code/bb_serial.py 19200; done
secs=300 baud=19200 bad=0.000%
total=175104 badchar=0
secs=300 baud=19200 bad=0.000%
total=175360 badchar=0
secs=300 baud=19200 bad=0.000%
total=175360 badchar=0
secs=300 baud=19200 bad=0.000%
total=174336 badchar=0
harry /ram $ for ((i=0;i<4;i++)); do /code/bb_serial.py 75; done
secs=300 baud=75 bad=0.000%
total=2048 badchar=0
secs=300 baud=75 bad=0.000%
total=2048 badchar=0
secs=300 baud=75 bad=0.000%
total=2048 badchar=0
secs=300 baud=75 bad=0.000%
total=2048 badchar=0
harry /ram $ for ((i=0;i<4;i++)); do /code/bb_serial.py 19200; done
secs=300 baud=19200 bad=0.000%
total=174592 badchar=0
secs=300 baud=19200 bad=0.000%
total=174592 badchar=0
secs=300 baud=19200 bad=0.000%
total=174848 badchar=0
secs=300 baud=19200 bad=0.000%
total=174848 badchar=0
harry /ram $ for ((i=0;i<4;i++)); do /code/bb_serial.py 19200; done
secs=300 baud=19200 bad=0.000%
total=174848 badchar=0
secs=300 baud=19200 bad=0.000%
total=175360 badchar=0
secs=300 baud=19200 bad=0.000%
total=174592 badchar=0
secs=300 baud=19200 bad=0.000%
total=174848 badchar=0
harry /ram $ for ((i=0;i<4;i++)); do /code/bb_serial.py 19200; done
secs=300 baud=19200 bad=0.000%
total=174592 badchar=0
secs=300 baud=19200 bad=0.000%
total=175104 badchar=0
secs=300 baud=19200 bad=0.000%
total=175104 badchar=0
secs=300 baud=19200 bad=0.000%
total=175360 badchar=0
harry /ram $ for ((i=0;i<4;i++)); do /code/bb_serial.py 19200; done
secs=300 baud=19200 bad=0.000%
total=175104 badchar=0
secs=300 baud=19200 bad=0.000%
total=174592 badchar=0
secs=300 baud=19200 bad=0.000%
total=174848 badchar=0
secs=300 baud=19200 bad=0.000%
total=175104 badchar=0
harry /ram $ for ((i=0;i<4;i++)); do /code/bb_serial.py 19200; done
secs=300 baud=19200 bad=0.000%
total=174848 badchar=0
secs=300 baud=19200 bad=0.000%
total=174848 badchar=0
secs=300 baud=19200 bad=0.000%
total=174848 badchar=0
secs=300 baud=19200 bad=0.000%
total=175104 badchar=0
joan
la source
Quel dongle de série avez-vous utilisé? Les plus âgés peuvent parfois être assez peu fiables ...
not2qubit
J'ai utilisé un module de sortie USB PL2303HX vers RS232 TTL 5V 3.3V pour les tests. 1,53 £ sur eBay.
joan
Vous pouvez facilement tester la fiabilité de la clé électronique; connectez son propre Tx à Rx et relancez le test
earcam
0

Lorsque vous câblez Tx directement à Rx pour tester sans quoi que ce soit qui ajouterait une erreur comme des dongles, cela vous indique le bon fonctionnement de la bibliothèque.

Utilisez GPIO 23 comme Tx et GPIO 24 comme Rx ou tout autre GPIO gratuit sur Raspberry Pi 3b +. Cela semble bon dans le même ordre que l'UART intégré et il est pratiquement à côté, à seulement 3 broches à droite, avec une broche GND à droite de Rx.

Résultats:

Until 19200bps no errors.
- 38400 and 57600 bps less 1% error sometimes
- 115200bps was 10-20% error or so
- 230400bps over 80% error or so

Si vous pouvez vivre avec 19200 ou moins sans avoir besoin d'utiliser des hachages de somme de contrôle ni des convertisseurs SPI / I2C en UART - ça devrait aller.

Donghelan
la source