Distance la plus courte entre un point et un segment de ligne

360

J'ai besoin d'une fonction de base pour trouver la distance la plus courte entre un point et un segment de ligne. N'hésitez pas à rédiger la solution dans la langue de votre choix; Je peux le traduire dans ce que j'utilise (Javascript).

EDIT: Mon segment de ligne est défini par deux points d'extrémité. Mon segment de ligne ABest donc défini par les deux points A (x1,y1)et B (x2,y2). J'essaie de trouver la distance entre ce segment de ligne et un point C (x3,y3). Mes compétences en géométrie sont rouillées, donc les exemples que j'ai vus prêtent à confusion, je suis désolé de l'admettre.

Eli Courtwright
la source
Je ne sais pas comment vous représentez les lignes et les points, mais voici toutes les mathématiques dont vous avez besoin pour commencer. Cela ne devrait pas être trop difficile de comprendre ce que vous devez faire.
mandaleeka
4
@ArthurKalliokoski: ce lien est mort, mais j'en ai trouvé une copie: paulbourke.net/geometry/pointline
Gunther Struyf
11
@GuntherStruyf: ce lien est également mort, mais ce lien similaire fonctionne: paulbourke.net/geometry/pointlineplane
Michael
1
Si quelqu'un cherche la distance entre un point et une ligne, pas un point et une ligne SEGMENT, consultez ce lien: gist.github.com/rhyolight/2846020
Nick Budden
1
Le lien ci-dessus est mort. Voici un pseudo-code et un exemple c ++, expliqués et dérivés aussi détaillés qu'un manuel, geomalgorithms.com/a02-_lines.html
Eric

Réponses:

448

Eli, le code que vous avez choisi est incorrect. Un point proche de la ligne sur laquelle se trouve le segment mais éloigné d'une extrémité du segment serait incorrectement jugé près du segment. Mise à jour: La réponse incorrecte mentionnée n'est plus celle acceptée.

Voici du code correct, en C ++. Il suppose un vecteur 2D de classe class vec2 {float x,y;}, essentiellement, avec des opérateurs pour ajouter, soustraire, mettre à l'échelle, etc., et une fonction de produit de distance et de point (c. x1 x2 + y1 y2-à-d.).

float minimum_distance(vec2 v, vec2 w, vec2 p) {
  // Return minimum distance between line segment vw and point p
  const float l2 = length_squared(v, w);  // i.e. |w-v|^2 -  avoid a sqrt
  if (l2 == 0.0) return distance(p, v);   // v == w case
  // Consider the line extending the segment, parameterized as v + t (w - v).
  // We find projection of point p onto the line. 
  // It falls where t = [(p-v) . (w-v)] / |w-v|^2
  // We clamp t from [0,1] to handle points outside the segment vw.
  const float t = max(0, min(1, dot(p - v, w - v) / l2));
  const vec2 projection = v + t * (w - v);  // Projection falls on the segment
  return distance(p, projection);
}

EDIT: J'avais besoin d'une implémentation Javascript, alors la voici, sans dépendances (ni commentaires, mais c'est un port direct de ce qui précède). Les points sont représentés comme des objets avec xet des yattributs.

function sqr(x) { return x * x }
function dist2(v, w) { return sqr(v.x - w.x) + sqr(v.y - w.y) }
function distToSegmentSquared(p, v, w) {
  var l2 = dist2(v, w);
  if (l2 == 0) return dist2(p, v);
  var t = ((p.x - v.x) * (w.x - v.x) + (p.y - v.y) * (w.y - v.y)) / l2;
  t = Math.max(0, Math.min(1, t));
  return dist2(p, { x: v.x + t * (w.x - v.x),
                    y: v.y + t * (w.y - v.y) });
}
function distToSegment(p, v, w) { return Math.sqrt(distToSegmentSquared(p, v, w)); }

EDIT 2: J'avais besoin d'une version Java, mais plus important, j'en avais besoin en 3D au lieu de 2D.

float dist_to_segment_squared(float px, float py, float pz, float lx1, float ly1, float lz1, float lx2, float ly2, float lz2) {
  float line_dist = dist_sq(lx1, ly1, lz1, lx2, ly2, lz2);
  if (line_dist == 0) return dist_sq(px, py, pz, lx1, ly1, lz1);
  float t = ((px - lx1) * (lx2 - lx1) + (py - ly1) * (ly2 - ly1) + (pz - lz1) * (lz2 - lz1)) / line_dist;
  t = constrain(t, 0, 1);
  return dist_sq(px, py, pz, lx1 + t * (lx2 - lx1), ly1 + t * (ly2 - ly1), lz1 + t * (lz2 - lz1));
}
Grumdrig
la source
1
J'ai ajouté une version étoffée de cela comme réponse distincte.
M Katz
4
Merci @Grumdrig, votre solution javascript était parfaite et un énorme gain de temps. J'ai porté votre solution sur Objective-C et l'ai ajoutée ci-dessous.
awolf
1
Nous essayons vraiment d'éviter une division par zéro là-bas.
Grumdrig
9
La projection du point psur une ligne est le point de la ligne le plus proche de p. (Et une perpendiculaire à la ligne à la projection passer à travers p.) Le nombre test la distance le long du segment de ligne à partir vde wce que la saillie diminue. Donc, si test 0, la projection tombe droit sur v; si c'est 1, c'est allumé w; si c'est 0,5, par exemple, c'est à mi-chemin. Si test inférieur à 0 ou supérieur à 1, il tombe sur la ligne au-delà d'une extrémité ou de l'autre du segment. Dans ce cas, la distance au segment sera la distance à l'extrémité la plus proche.
Grumdrig
1
Oups - je n'ai pas remarqué que quelqu'un avait fourni une version 3D. @RogiSolorzano, vous devrez d'abord convertir les coordonnées lat, longues en coordonnées x, y, z dans 3 espaces.
Grumdrig
112

Voici le code complet le plus simple en Javascript.

x, y est votre point cible et x1, y1 à x2, y2 est votre segment de ligne.

MISE À JOUR: correction du problème de ligne de longueur 0 à partir des commentaires.

function pDistance(x, y, x1, y1, x2, y2) {

  var A = x - x1;
  var B = y - y1;
  var C = x2 - x1;
  var D = y2 - y1;

  var dot = A * C + B * D;
  var len_sq = C * C + D * D;
  var param = -1;
  if (len_sq != 0) //in case of 0 length line
      param = dot / len_sq;

  var xx, yy;

  if (param < 0) {
    xx = x1;
    yy = y1;
  }
  else if (param > 1) {
    xx = x2;
    yy = y2;
  }
  else {
    xx = x1 + param * C;
    yy = y1 + param * D;
  }

  var dx = x - xx;
  var dy = y - yy;
  return Math.sqrt(dx * dx + dy * dy);
}

Image pour aider à visualiser la solution

Joshua
la source
8
De tout le code que j'ai vu pour résoudre ce problème, je préfère celui-ci. C'est très clair et facile à lire. Le calcul derrière, cependant, est un peu mystique. Que représente réellement le produit scalaire divisé par la longueur au carré, par exemple?
user1815201
2
Le produit scalaire divisé par la longueur au carré vous donne la distance de projection à partir de (x1, y1). Il s'agit de la fraction de la ligne à laquelle le point (x, y) est le plus proche. Remarquez la dernière clause else où (xx, yy) est calculé - c'est la projection du point (x, y) sur le segment (x1, y1) - (x2, y2).
Logan Pickup
4
La vérification des segments de ligne de longueur 0 est trop loin dans le code. 'len_sq' sera nul et le code divisera par 0 avant d'arriver au contrôle de sécurité.
HostedMetrics.com
17
Mètres. Il est retourné en mètres.
Joshua
1
@nevermind, appelons notre point p0 et les points qui définissent la ligne comme p1 et p2. Ensuite, vous obtenez les vecteurs A = p0 - p1 et B = p2 - p1. Param est la valeur scalaire qui, multipliée en B, vous donne le point sur la ligne la plus proche de p0. Si param <= 0, le point le plus proche est p1. Si param> = 1, le point le plus proche est p1. Si c'est entre 0 et 1, c'est quelque part entre p1 et p2 donc on interpole. XX et YY est alors le point le plus proche sur le segment de ligne, dx / dy est le vecteur de p0 à ce point, et finalement nous retournons la longueur de ce vecteur.
Sean
70

Ceci est une implémentation faite pour les SEGMENTS DE LIGNE FINITE, pas des lignes infinies comme la plupart des autres fonctions ici semblent l'être (c'est pourquoi j'ai fait cela).

Mise en œuvre de la théorie par Paul Bourke .

Python:

def dist(x1, y1, x2, y2, x3, y3): # x3,y3 is the point
    px = x2-x1
    py = y2-y1

    norm = px*px + py*py

    u =  ((x3 - x1) * px + (y3 - y1) * py) / float(norm)

    if u > 1:
        u = 1
    elif u < 0:
        u = 0

    x = x1 + u * px
    y = y1 + u * py

    dx = x - x3
    dy = y - y3

    # Note: If the actual distance does not matter,
    # if you only want to compare what this function
    # returns to other results of this function, you
    # can just return the squared distance instead
    # (i.e. remove the sqrt) to gain a little performance

    dist = (dx*dx + dy*dy)**.5

    return dist

AS3:

public static function segmentDistToPoint(segA:Point, segB:Point, p:Point):Number
{
    var p2:Point = new Point(segB.x - segA.x, segB.y - segA.y);
    var something:Number = p2.x*p2.x + p2.y*p2.y;
    var u:Number = ((p.x - segA.x) * p2.x + (p.y - segA.y) * p2.y) / something;

    if (u > 1)
        u = 1;
    else if (u < 0)
        u = 0;

    var x:Number = segA.x + u * p2.x;
    var y:Number = segA.y + u * p2.y;

    var dx:Number = x - p.x;
    var dy:Number = y - p.y;

    var dist:Number = Math.sqrt(dx*dx + dy*dy);

    return dist;
}

Java

private double shortestDistance(float x1,float y1,float x2,float y2,float x3,float y3)
    {
        float px=x2-x1;
        float py=y2-y1;
        float temp=(px*px)+(py*py);
        float u=((x3 - x1) * px + (y3 - y1) * py) / (temp);
        if(u>1){
            u=1;
        }
        else if(u<0){
            u=0;
        }
        float x = x1 + u * px;
        float y = y1 + u * py;

        float dx = x - x3;
        float dy = y - y3;
        double dist = Math.sqrt(dx*dx + dy*dy);
        return dist;

    }
quano
la source
2
Désolé, mais j'ai essayé et cela me donne toujours les résultats comme si la ligne s'étendait à l'infini. J'ai trouvé la réponse de Grumdig au travail, cependant.
Frederik
1
Dans ce cas, vous l'utilisez mal ou vous voulez dire autre chose avec non infini. Voir un exemple de ce code ici: boomie.se/upload/Drawdebug.swf
quano
On dirait une erreur de code ou quelque chose comme ça, j'obtiens le même résultat que Frederik /
Kromster
30
Le choix des noms de variables est loin d'être bon (p2, quelque chose, u, ...)
miguelSantirso
2
J'ai essayé la version Python de la fonction et j'ai constaté qu'elle affiche des résultats incorrects si les paramètres sont des entiers. distAnother(0, 0, 4, 0, 2, 2)donne 2,8284271247461903 (incorrect). distAnother(0., 0., 4., 0., 2., 2.)donne 2.0 (correct). Veuillez en être conscient. Je pense que le code peut être amélioré pour avoir une conversion flottante quelque part.
Vladimir Obrizan
22

Dans mon propre fil de question, comment calculer la distance 2D la plus courte entre un point et un segment de ligne dans tous les cas en C, C # / .NET 2.0 ou Java? On m'a demandé de mettre une réponse C # ici quand j'en trouve une: la voici donc, modifiée à partir de http://www.topcoder.com/tc?d1=tutorials&d2=geometry1&module=Static :

//Compute the dot product AB . BC
private double DotProduct(double[] pointA, double[] pointB, double[] pointC)
{
    double[] AB = new double[2];
    double[] BC = new double[2];
    AB[0] = pointB[0] - pointA[0];
    AB[1] = pointB[1] - pointA[1];
    BC[0] = pointC[0] - pointB[0];
    BC[1] = pointC[1] - pointB[1];
    double dot = AB[0] * BC[0] + AB[1] * BC[1];

    return dot;
}

//Compute the cross product AB x AC
private double CrossProduct(double[] pointA, double[] pointB, double[] pointC)
{
    double[] AB = new double[2];
    double[] AC = new double[2];
    AB[0] = pointB[0] - pointA[0];
    AB[1] = pointB[1] - pointA[1];
    AC[0] = pointC[0] - pointA[0];
    AC[1] = pointC[1] - pointA[1];
    double cross = AB[0] * AC[1] - AB[1] * AC[0];

    return cross;
}

//Compute the distance from A to B
double Distance(double[] pointA, double[] pointB)
{
    double d1 = pointA[0] - pointB[0];
    double d2 = pointA[1] - pointB[1];

    return Math.Sqrt(d1 * d1 + d2 * d2);
}

//Compute the distance from AB to C
//if isSegment is true, AB is a segment, not a line.
double LineToPointDistance2D(double[] pointA, double[] pointB, double[] pointC, 
    bool isSegment)
{
    double dist = CrossProduct(pointA, pointB, pointC) / Distance(pointA, pointB);
    if (isSegment)
    {
        double dot1 = DotProduct(pointA, pointB, pointC);
        if (dot1 > 0) 
            return Distance(pointB, pointC);

        double dot2 = DotProduct(pointB, pointA, pointC);
        if (dot2 > 0) 
            return Distance(pointA, pointC);
    }
    return Math.Abs(dist);
} 

Je suis @SO pour ne pas répondre mais poser des questions, donc j'espère que je n'obtiendrai pas des millions de votes négatifs pour certaines raisons, mais que je construis un critique. Je voulais juste (et j'ai été encouragé) partager les idées de quelqu'un d'autre car les solutions de ce fil sont soit avec un langage exotique (Fortran, Mathematica), soit marquées comme défectueuses par quelqu'un. Le seul utile (par Grumdrig) pour moi est écrit avec C ++ et personne ne l'a étiqueté défectueux. Mais il manque les méthodes (point etc.) qui sont appelées.

char m
la source
1
Merci d'avoir posté ça. Mais il semble qu'il y ait une optimisation évidente possible dans la dernière méthode: ne calculez la dist qu'après avoir déterminé qu'elle est nécessaire.
RenniePet
2
Le commentaire sur DotProduct dit que c'est le calcul AB.AC, mais c'est le calcul AB.BC.
Metal450
Le produit croisé par définition renvoie un vecteur mais renvoie ici un scalaire.
SteakOverflow du
21

En F #, la distance du point cau segment de ligne entre aet best donnée par:

let pointToLineSegmentDistance (a: Vector, b: Vector) (c: Vector) =
  let d = b - a
  let s = d.Length
  let lambda = (c - a) * d / s
  let p = (lambda |> max 0.0 |> min s) * d / s
  (a + p - c).Length

Le vecteur dpointe de aà le blong du segment de ligne. Le produit scalaire de d/savec c-adonne le paramètre du point d'approche le plus proche entre la ligne infinie et le point c. La fonction minet maxsont utilisées pour fixer ce paramètre à la plage de 0..ssorte que le point se situe entre aet b. Enfin, la longueur de a+p-cest la distance du cpoint le plus proche sur le segment de ligne.

Exemple d'utilisation:

pointToLineSegmentDistance (Vector(0.0, 0.0), Vector(1.0, 0.0)) (Vector(-1.0, 1.0))
Jon Harrop
la source
1
Je pense que la dernière ligne est incorrecte et devrait se lire:(a + p - c).Length
Blair Holloway
Cela ne résout toujours pas complètement le problème. Une façon de corriger la fonction serait de redéfinir lambdaet pas let lambda = (c - a) * d / (s * s)et let p = a + (lambda |> max 0.0 |> min 1.0) * d, respectivement. Après cela, la fonction renvoie la distance correcte, par exemple pour le cas où a = (0,1), b = (1,0)et c = (1,1).
mikkoma
20

Pour toute personne intéressée, voici une conversion triviale du code Javascript de Joshua en Objective-C:

- (double)distanceToPoint:(CGPoint)p fromLineSegmentBetween:(CGPoint)l1 and:(CGPoint)l2
{
    double A = p.x - l1.x;
    double B = p.y - l1.y;
    double C = l2.x - l1.x;
    double D = l2.y - l1.y;

    double dot = A * C + B * D;
    double len_sq = C * C + D * D;
    double param = dot / len_sq;

    double xx, yy;

    if (param < 0 || (l1.x == l2.x && l1.y == l2.y)) {
        xx = l1.x;
        yy = l1.y;
    }
    else if (param > 1) {
        xx = l2.x;
        yy = l2.y;
    }
    else {
        xx = l1.x + param * C;
        yy = l1.y + param * D;
    }

    double dx = p.x - xx;
    double dy = p.y - yy;

    return sqrtf(dx * dx + dy * dy);
}

J'avais besoin de cette solution pour travailler, MKMapPointdonc je la partagerai au cas où quelqu'un d'autre en aurait besoin. Juste quelques changements mineurs et cela retournera la distance en mètres:

- (double)distanceToPoint:(MKMapPoint)p fromLineSegmentBetween:(MKMapPoint)l1 and:(MKMapPoint)l2
{
    double A = p.x - l1.x;
    double B = p.y - l1.y;
    double C = l2.x - l1.x;
    double D = l2.y - l1.y;

    double dot = A * C + B * D;
    double len_sq = C * C + D * D;
    double param = dot / len_sq;

    double xx, yy;

    if (param < 0 || (l1.x == l2.x && l1.y == l2.y)) {
        xx = l1.x;
        yy = l1.y;
    }
    else if (param > 1) {
        xx = l2.x;
        yy = l2.y;
    }
    else {
        xx = l1.x + param * C;
        yy = l1.y + param * D;
    }

    return MKMetersBetweenMapPoints(p, MKMapPointMake(xx, yy));
}
Ben Gotow
la source
Cela semble bien fonctionner pour moi. Merci d'avoir converti.
Gregir
Il convient de noter que (xx, yy) est l'emplacement du point le plus proche. J'ai un peu édité votre code, donc il retourne à la fois le point et la distance, les noms refactorisés afin qu'ils décrivent ce qui est quoi et fourni un exemple à: stackoverflow.com/a/28028023/849616 .
Vive le
20

Dans Mathematica

Il utilise une description paramétrique du segment et projette le point dans la ligne définie par le segment. Lorsque le paramètre passe de 0 à 1 dans le segment, si la projection est en dehors de ces limites, nous calculons la distance jusqu'au point de référence correspondant, au lieu de la droite normale au segment.

Clear["Global`*"];
 distance[{start_, end_}, pt_] := 
   Module[{param},
   param = ((pt - start).(end - start))/Norm[end - start]^2; (*parameter. the "."
                                                       here means vector product*)

   Which[
    param < 0, EuclideanDistance[start, pt],                 (*If outside bounds*)
    param > 1, EuclideanDistance[end, pt],
    True, EuclideanDistance[pt, start + param (end - start)] (*Normal distance*)
    ]
   ];  

Résultat du tracé:

Plot3D[distance[{{0, 0}, {1, 0}}, {xp, yp}], {xp, -1, 2}, {yp, -1, 2}]

texte alternatif

Tracez ces points plus près d'une distance de coupure :

texte alternatif

Tracé de contour:

entrez la description de l'image ici

Dr. belisarius
la source
11

Hé, je viens d'écrire ça hier. C'est dans Actionscript 3.0, qui est essentiellement Javascript, bien que vous n'ayez peut-être pas la même classe Point.

//st = start of line segment
//b = the line segment (as in: st + b = end of line segment)
//pt = point to test
//Returns distance from point to line segment.  
//Note: nearest point on the segment to the test point is right there if we ever need it
public static function linePointDist( st:Point, b:Point, pt:Point ):Number
{
    var nearestPt:Point; //closest point on seqment to pt

    var keyDot:Number = dot( b, pt.subtract( st ) ); //key dot product
    var bLenSq:Number = dot( b, b ); //Segment length squared

    if( keyDot <= 0 )  //pt is "behind" st, use st
    {
        nearestPt = st  
    }
    else if( keyDot >= bLenSq ) //pt is "past" end of segment, use end (notice we are saving twin sqrts here cuz)
    {
        nearestPt = st.add(b);
    }
    else //pt is inside segment, reuse keyDot and bLenSq to get percent of seqment to move in to find closest point
    {
        var keyDotToPctOfB:Number = keyDot/bLenSq; //REM dot product comes squared
        var partOfB:Point = new Point( b.x * keyDotToPctOfB, b.y * keyDotToPctOfB );
        nearestPt = st.add(partOfB);
    }

    var dist:Number = (pt.subtract(nearestPt)).length;

    return dist;
}

En outre, il y a une discussion assez complète et lisible du problème ici: notejot.com

Matt W
la source
Merci - c'est exactement le type de code que je cherchais. J'ai posté ma propre réponse ci-dessous, car j'ai réussi à mettre en place quelque chose qui fonctionne dans Javascript du navigateur de l'ère actuelle, mais j'ai marqué votre réponse comme acceptée parce qu'elle est simple, bien écrite, facile à comprendre, et très apprécié.
Eli Courtwright
N'est-ce pas manquer la méthode point? Dans tous les cas, il est facile de calculer: vec1.x * vec2.x + vec1.y * vec2.y
quano
11

Pour les paresseux, voici mon port Objective-C de la solution de @ Grumdrig ci-dessus:

CGFloat sqr(CGFloat x) { return x*x; }
CGFloat dist2(CGPoint v, CGPoint w) { return sqr(v.x - w.x) + sqr(v.y - w.y); }
CGFloat distanceToSegmentSquared(CGPoint p, CGPoint v, CGPoint w)
{
    CGFloat l2 = dist2(v, w);
    if (l2 == 0.0f) return dist2(p, v);

    CGFloat t = ((p.x - v.x) * (w.x - v.x) + (p.y - v.y) * (w.y - v.y)) / l2;
    if (t < 0.0f) return dist2(p, v);
    if (t > 1.0f) return dist2(p, w);
    return dist2(p, CGPointMake(v.x + t * (w.x - v.x), v.y + t * (w.y - v.y)));
}
CGFloat distanceToSegment(CGPoint point, CGPoint segmentPointV, CGPoint segmentPointW)
{
    return sqrtf(distanceToSegmentSquared(point, segmentPointV, segmentPointW));
}
trs awolf
la source
Je reçois «nan» de cette ligne. Une idée pourquoi? (Merci d'avoir tapé ceci dans Obj-C, au fait!) return dist2(p, CGPointMake(v.x + t * (w.x - v.x), v.y + t * (w.y - v.y)))
Gregir
sqrtf () met au carré x, sans obtenir sa racine carrée
Senseful
@Senseful Je ne sais pas ce que tu veux dire. sqrtf est la racine carrée.developer.apple.com/library/mac/documentation/Darwin/Reference/…
awolf
@awolf: Jetez un œil à la première ligne de code ci-dessus. Il définit la méthodesqrtf(x) = x*x .
Senseful
@ Merci, il a été mal nommé plutôt que d'effectuer la mauvaise opération.
awolf
10

Impossible de résister au codage en python :)

from math import sqrt, fabs
def pdis(a, b, c):
    t = b[0]-a[0], b[1]-a[1]           # Vector ab
    dd = sqrt(t[0]**2+t[1]**2)         # Length of ab
    t = t[0]/dd, t[1]/dd               # unit vector of ab
    n = -t[1], t[0]                    # normal unit vector to ab
    ac = c[0]-a[0], c[1]-a[1]          # vector ac
    return fabs(ac[0]*n[0]+ac[1]*n[1]) # Projection of ac to n (the minimum distance)

print pdis((1,1), (2,2), (2,0))        # Example (answer is 1.414)


Idem pour fortran :)

real function pdis(a, b, c)
    real, dimension(0:1), intent(in) :: a, b, c
    real, dimension(0:1) :: t, n, ac
    real :: dd
    t = b - a                          ! Vector ab
    dd = sqrt(t(0)**2+t(1)**2)         ! Length of ab
    t = t/dd                           ! unit vector of ab
    n = (/-t(1), t(0)/)                ! normal unit vector to ab
    ac = c - a                         ! vector ac
    pdis = abs(ac(0)*n(0)+ac(1)*n(1))  ! Projection of ac to n (the minimum distance)
end function pdis


program test
    print *, pdis((/1.0,1.0/), (/2.0,2.0/), (/2.0,0.0/))   ! Example (answer is 1.414)
end program test
cyberthanase
la source
10
n'est-ce pas le calcul de la distance d'un point à une ligne au lieu du segment?
balint.miklos
6
Il s'agit en effet de la distance à la ligne sur laquelle se trouve le segment, pas au segment.
Grumdrig
12
Cela ne semble pas fonctionner. Si vous avez un segment de (0,0) et (5,0) et essayez contre le point (7,0), il renverra 0, ce qui n'est pas vrai. La distance devrait être de 2.
quano
8
Il n'a pas pris en considération le cas où la projection du point sur le segment est en dehors de l'intervalle de A à B. C'est peut-être ce que le questionneur voulait, mais pas ce qu'il a demandé.
phkahler
5
Ce n'est pas ce qui avait été demandé à l'origine.
Sambatyon
10

Voici une orthographe plus complète de la solution de Grumdrig. Cette version renvoie également le point le plus proche lui-même.

#include "stdio.h"
#include "math.h"

class Vec2
{
public:
    float _x;
    float _y;

    Vec2()
    {
        _x = 0;
        _y = 0;
    }

    Vec2( const float x, const float y )
    {
        _x = x;
        _y = y;
    }

    Vec2 operator+( const Vec2 &v ) const
    {
        return Vec2( this->_x + v._x, this->_y + v._y );
    }

    Vec2 operator-( const Vec2 &v ) const
    {
        return Vec2( this->_x - v._x, this->_y - v._y );
    }

    Vec2 operator*( const float f ) const
    {
        return Vec2( this->_x * f, this->_y * f );
    }

    float DistanceToSquared( const Vec2 p ) const
    {
        const float dX = p._x - this->_x;
        const float dY = p._y - this->_y;

        return dX * dX + dY * dY;
    }

    float DistanceTo( const Vec2 p ) const
    {
        return sqrt( this->DistanceToSquared( p ) );
    }

    float DotProduct( const Vec2 p ) const
    {
        return this->_x * p._x + this->_y * p._y;
    }
};

// return minimum distance between line segment vw and point p, and the closest point on the line segment, q
float DistanceFromLineSegmentToPoint( const Vec2 v, const Vec2 w, const Vec2 p, Vec2 * const q )
{
    const float distSq = v.DistanceToSquared( w ); // i.e. |w-v|^2 ... avoid a sqrt
    if ( distSq == 0.0 )
    {
        // v == w case
        (*q) = v;

        return v.DistanceTo( p );
    }

    // consider the line extending the segment, parameterized as v + t (w - v)
    // we find projection of point p onto the line
    // it falls where t = [(p-v) . (w-v)] / |w-v|^2

    const float t = ( p - v ).DotProduct( w - v ) / distSq;
    if ( t < 0.0 )
    {
        // beyond the v end of the segment
        (*q) = v;

        return v.DistanceTo( p );
    }
    else if ( t > 1.0 )
    {
        // beyond the w end of the segment
        (*q) = w;

        return w.DistanceTo( p );
    }

    // projection falls on the segment
    const Vec2 projection = v + ( ( w - v ) * t );

    (*q) = projection;

    return p.DistanceTo( projection );
}

float DistanceFromLineSegmentToPoint( float segmentX1, float segmentY1, float segmentX2, float segmentY2, float pX, float pY, float *qX, float *qY )
{
    Vec2 q;

    float distance = DistanceFromLineSegmentToPoint( Vec2( segmentX1, segmentY1 ), Vec2( segmentX2, segmentY2 ), Vec2( pX, pY ), &q );

    (*qX) = q._x;
    (*qY) = q._y;

    return distance;
}

void TestDistanceFromLineSegmentToPoint( float segmentX1, float segmentY1, float segmentX2, float segmentY2, float pX, float pY )
{
    float qX;
    float qY;
    float d = DistanceFromLineSegmentToPoint( segmentX1, segmentY1, segmentX2, segmentY2, pX, pY, &qX, &qY );
    printf( "line segment = ( ( %f, %f ), ( %f, %f ) ), p = ( %f, %f ), distance = %f, q = ( %f, %f )\n",
            segmentX1, segmentY1, segmentX2, segmentY2, pX, pY, d, qX, qY );
}

void TestDistanceFromLineSegmentToPoint()
{
    TestDistanceFromLineSegmentToPoint( 0, 0, 1, 1, 1, 0 );
    TestDistanceFromLineSegmentToPoint( 0, 0, 20, 10, 5, 4 );
    TestDistanceFromLineSegmentToPoint( 0, 0, 20, 10, 30, 15 );
    TestDistanceFromLineSegmentToPoint( 0, 0, 20, 10, -30, 15 );
    TestDistanceFromLineSegmentToPoint( 0, 0, 10, 0, 5, 1 );
    TestDistanceFromLineSegmentToPoint( 0, 0, 0, 10, 1, 5 );
}
M Katz
la source
Merci d'avoir posté ça. Très bien structuré et commenté et formaté - m'a presque fait oublier à quel point je n'aime pas le C ++. Je l'ai utilisé pour créer une version C # correspondante, que j'ai maintenant publiée ici.
RenniePet du
10

Solution à une ligne utilisant des arctangents:

L'idée est de déplacer A vers (0, 0) et de faire pivoter le triangle dans le sens des aiguilles d'une montre pour que C se trouve sur l'axe X, lorsque cela se produira, By sera la distance.

  1. un angle = Atan (Cy - Ay, Cx - Ax);
  2. angle b = Atan (By - Ay, Bx - Ax);
  3. Longueur AB = Sqrt ((Bx - Ax) ^ 2 + (By - Ay) ^ 2)
  4. By = Sin (bAngle - aAngle) * ABLength

C #

public double Distance(Point a, Point b, Point c)
{
    // normalize points
    Point cn = new Point(c.X - a.X, c.Y - a.Y);
    Point bn = new Point(b.X - a.X, b.Y - a.Y);

    double angle = Math.Atan2(bn.Y, bn.X) - Math.Atan2(cn.Y, cn.X);
    double abLength = Math.Sqrt(bn.X*bn.X + bn.Y*bn.Y);

    return Math.Sin(angle)*abLength;
}

Une ligne C # (à convertir en SQL)

double distance = Math.Sin(Math.Atan2(b.Y - a.Y, b.X - a.X) - Math.Atan2(c.Y - a.Y, c.X - a.X)) * Math.Sqrt((b.X - a.X) * (b.X - a.X) + (b.Y - a.Y) * (b.Y - a.Y))
ADOConnection
la source
7

Considérez cette modification de la réponse de Grumdrig ci-dessus. Plusieurs fois, vous constaterez que l'imprécision en virgule flottante peut causer des problèmes. J'utilise des doubles dans la version ci-dessous, mais vous pouvez facilement passer aux flotteurs. La partie importante est qu'il utilise un epsilon pour gérer la "slop". De plus, vous voudrez souvent savoir OERE l'intersection s'est produite, ou si elle s'est produite. Si le t renvoyé est <0,0 ou> 1,0, aucune collision ne s'est produite. Cependant, même si aucune collision ne s'est produite, vous voudrez souvent savoir où se trouve le point le plus proche du segment à P, et donc j'utilise qx et qy pour retourner cet emplacement.

double PointSegmentDistanceSquared( double px, double py,
                                    double p1x, double p1y,
                                    double p2x, double p2y,
                                    double& t,
                                    double& qx, double& qy)
{
    static const double kMinSegmentLenSquared = 0.00000001;  // adjust to suit.  If you use float, you'll probably want something like 0.000001f
    static const double kEpsilon = 1.0E-14;  // adjust to suit.  If you use floats, you'll probably want something like 1E-7f
    double dx = p2x - p1x;
    double dy = p2y - p1y;
    double dp1x = px - p1x;
    double dp1y = py - p1y;
    const double segLenSquared = (dx * dx) + (dy * dy);
    if (segLenSquared >= -kMinSegmentLenSquared && segLenSquared <= kMinSegmentLenSquared)
    {
        // segment is a point.
        qx = p1x;
        qy = p1y;
        t = 0.0;
        return ((dp1x * dp1x) + (dp1y * dp1y));
    }
    else
    {
        // Project a line from p to the segment [p1,p2].  By considering the line
        // extending the segment, parameterized as p1 + (t * (p2 - p1)),
        // we find projection of point p onto the line. 
        // It falls where t = [(p - p1) . (p2 - p1)] / |p2 - p1|^2
        t = ((dp1x * dx) + (dp1y * dy)) / segLenSquared;
        if (t < kEpsilon)
        {
            // intersects at or to the "left" of first segment vertex (p1x, p1y).  If t is approximately 0.0, then
            // intersection is at p1.  If t is less than that, then there is no intersection (i.e. p is not within
            // the 'bounds' of the segment)
            if (t > -kEpsilon)
            {
                // intersects at 1st segment vertex
                t = 0.0;
            }
            // set our 'intersection' point to p1.
            qx = p1x;
            qy = p1y;
            // Note: If you wanted the ACTUAL intersection point of where the projected lines would intersect if
            // we were doing PointLineDistanceSquared, then qx would be (p1x + (t * dx)) and qy would be (p1y + (t * dy)).
        }
        else if (t > (1.0 - kEpsilon))
        {
            // intersects at or to the "right" of second segment vertex (p2x, p2y).  If t is approximately 1.0, then
            // intersection is at p2.  If t is greater than that, then there is no intersection (i.e. p is not within
            // the 'bounds' of the segment)
            if (t < (1.0 + kEpsilon))
            {
                // intersects at 2nd segment vertex
                t = 1.0;
            }
            // set our 'intersection' point to p2.
            qx = p2x;
            qy = p2y;
            // Note: If you wanted the ACTUAL intersection point of where the projected lines would intersect if
            // we were doing PointLineDistanceSquared, then qx would be (p1x + (t * dx)) and qy would be (p1y + (t * dy)).
        }
        else
        {
            // The projection of the point to the point on the segment that is perpendicular succeeded and the point
            // is 'within' the bounds of the segment.  Set the intersection point as that projected point.
            qx = p1x + (t * dx);
            qy = p1y + (t * dy);
        }
        // return the squared distance from p to the intersection point.  Note that we return the squared distance
        // as an optimization because many times you just need to compare relative distances and the squared values
        // works fine for that.  If you want the ACTUAL distance, just take the square root of this value.
        double dpqx = px - qx;
        double dpqy = py - qy;
        return ((dpqx * dpqx) + (dpqy * dpqy));
    }
}
devnullicus
la source
6

Je suppose que vous voulez trouver le plus courtdistance entre le point et un segment de ligne; pour ce faire, vous devez trouver la ligne (ligne A) qui est perpendiculaire à votre segment de ligne (ligne B) qui passe par votre point, déterminer l'intersection entre cette ligne (ligne A) et votre ligne qui passe par votre segment de ligne (ligne B) ; si ce point est entre les deux points de votre segment de ligne, alors la distance est la distance entre votre point et le point que vous venez de trouver qui est l'intersection de la ligne A et de la ligne B; si le point n'est pas entre les deux points de votre segment de ligne, vous devez obtenir la distance entre votre point et le plus proche des deux extrémités du segment de ligne; cela peut être fait facilement en prenant la distance carrée (pour éviter une racine carrée) entre le point et les deux points du segment de ligne; selon ce qui est le plus proche, prenez la racine carrée de celle-ci.

Paul Sonier
la source
6

L'implémentation C ++ / JavaScript de Grumdrig m'a été très utile, j'ai donc fourni un port direct Python que j'utilise. Le code complet est ici .

class Point(object):
  def __init__(self, x, y):
    self.x = float(x)
    self.y = float(y)

def square(x):
  return x * x

def distance_squared(v, w):
  return square(v.x - w.x) + square(v.y - w.y)

def distance_point_segment_squared(p, v, w):
  # Segment length squared, |w-v|^2
  d2 = distance_squared(v, w) 
  if d2 == 0: 
    # v == w, return distance to v
    return distance_squared(p, v)
  # Consider the line extending the segment, parameterized as v + t (w - v).
  # We find projection of point p onto the line.
  # It falls where t = [(p-v) . (w-v)] / |w-v|^2
  t = ((p.x - v.x) * (w.x - v.x) + (p.y - v.y) * (w.y - v.y)) / d2;
  if t < 0:
    # Beyond v end of the segment
    return distance_squared(p, v)
  elif t > 1.0:
    # Beyond w end of the segment
    return distance_squared(p, w)
  else:
    # Projection falls on the segment.
    proj = Point(v.x + t * (w.x - v.x), v.y + t * (w.y - v.y))
    # print proj.x, proj.y
    return distance_squared(p, proj)
laine
la source
5

Code Matlab, avec "auto-test" intégré s'ils appellent la fonction sans argument:

function r = distPointToLineSegment( xy0, xy1, xyP )
% r = distPointToLineSegment( xy0, xy1, xyP )

if( nargin < 3 )
    selfTest();
    r=0;
else
    vx = xy0(1)-xyP(1);
    vy = xy0(2)-xyP(2);
    ux = xy1(1)-xy0(1);
    uy = xy1(2)-xy0(2);
    lenSqr= (ux*ux+uy*uy);
    detP= -vx*ux + -vy*uy;

    if( detP < 0 )
        r = norm(xy0-xyP,2);
    elseif( detP > lenSqr )
        r = norm(xy1-xyP,2);
    else
        r = abs(ux*vy-uy*vx)/sqrt(lenSqr);
    end
end


    function selfTest()
        %#ok<*NASGU>
        disp(['invalid args, distPointToLineSegment running (recursive)  self-test...']);

        ptA = [1;1]; ptB = [-1;-1];
        ptC = [1/2;1/2];  % on the line
        ptD = [-2;-1.5];  % too far from line segment
        ptE = [1/2;0];    % should be same as perpendicular distance to line
        ptF = [1.5;1.5];      % along the A-B but outside of the segment

        distCtoAB = distPointToLineSegment(ptA,ptB,ptC)
        distDtoAB = distPointToLineSegment(ptA,ptB,ptD)
        distEtoAB = distPointToLineSegment(ptA,ptB,ptE)
        distFtoAB = distPointToLineSegment(ptA,ptB,ptF)
        figure(1); clf;
        circle = @(x, y, r, c) rectangle('Position', [x-r, y-r, 2*r, 2*r], ...
            'Curvature', [1 1], 'EdgeColor', c);
        plot([ptA(1) ptB(1)],[ptA(2) ptB(2)],'r-x'); hold on;
        plot(ptC(1),ptC(2),'b+'); circle(ptC(1),ptC(2), 0.5e-1, 'b');
        plot(ptD(1),ptD(2),'g+'); circle(ptD(1),ptD(2), distDtoAB, 'g');
        plot(ptE(1),ptE(2),'k+'); circle(ptE(1),ptE(2), distEtoAB, 'k');
        plot(ptF(1),ptF(2),'m+'); circle(ptF(1),ptF(2), distFtoAB, 'm');
        hold off;
        axis([-3 3 -3 3]); axis equal;
    end

end
peter karasev
la source
Merci, ce code Matlab calcule en effet la distance la plus courte jusqu'à la ligne SEGMENT et non la distance jusqu'à la ligne infinie sur laquelle se trouve le segment.
Rudolf Meijering
4

Et maintenant ma solution aussi ...... (Javascript)

C'est très rapide car j'essaye d'éviter toutes les fonctions Math.pow.

Comme vous pouvez le voir, à la fin de la fonction, j'ai la distance de la ligne.

le code provient de la lib http://www.draw2d.org/graphiti/jsdoc/#!/example

/**
 * Static util function to determine is a point(px,py) on the line(x1,y1,x2,y2)
 * A simple hit test.
 * 
 * @return {boolean}
 * @static
 * @private
 * @param {Number} coronaWidth the accepted corona for the hit test
 * @param {Number} X1 x coordinate of the start point of the line
 * @param {Number} Y1 y coordinate of the start point of the line
 * @param {Number} X2 x coordinate of the end point of the line
 * @param {Number} Y2 y coordinate of the end point of the line
 * @param {Number} px x coordinate of the point to test
 * @param {Number} py y coordinate of the point to test
 **/
graphiti.shape.basic.Line.hit= function( coronaWidth, X1, Y1,  X2,  Y2, px, py)
{
  // Adjust vectors relative to X1,Y1
  // X2,Y2 becomes relative vector from X1,Y1 to end of segment
  X2 -= X1;
  Y2 -= Y1;
  // px,py becomes relative vector from X1,Y1 to test point
  px -= X1;
  py -= Y1;
  var dotprod = px * X2 + py * Y2;
  var projlenSq;
  if (dotprod <= 0.0) {
      // px,py is on the side of X1,Y1 away from X2,Y2
      // distance to segment is length of px,py vector
      // "length of its (clipped) projection" is now 0.0
      projlenSq = 0.0;
  } else {
      // switch to backwards vectors relative to X2,Y2
      // X2,Y2 are already the negative of X1,Y1=>X2,Y2
      // to get px,py to be the negative of px,py=>X2,Y2
      // the dot product of two negated vectors is the same
      // as the dot product of the two normal vectors
      px = X2 - px;
      py = Y2 - py;
      dotprod = px * X2 + py * Y2;
      if (dotprod <= 0.0) {
          // px,py is on the side of X2,Y2 away from X1,Y1
          // distance to segment is length of (backwards) px,py vector
          // "length of its (clipped) projection" is now 0.0
          projlenSq = 0.0;
      } else {
          // px,py is between X1,Y1 and X2,Y2
          // dotprod is the length of the px,py vector
          // projected on the X2,Y2=>X1,Y1 vector times the
          // length of the X2,Y2=>X1,Y1 vector
          projlenSq = dotprod * dotprod / (X2 * X2 + Y2 * Y2);
      }
  }
    // Distance to line is now the length of the relative point
    // vector minus the length of its projection onto the line
    // (which is zero if the projection falls outside the range
    //  of the line segment).
    var lenSq = px * px + py * py - projlenSq;
    if (lenSq < 0) {
        lenSq = 0;
    }
    return Math.sqrt(lenSq)<coronaWidth;
};
user1397870
la source
4

codé en t-sql

le point est (@px, @py) et le segment de ligne s'étend de (@ax, @ay) à (@bx, @by)

create function fn_sqr (@NumberToSquare decimal(18,10)) 
returns decimal(18,10)
as 
begin
    declare @Result decimal(18,10)
    set @Result = @NumberToSquare * @NumberToSquare
    return @Result
end
go

create function fn_Distance(@ax decimal (18,10) , @ay decimal (18,10), @bx decimal(18,10),  @by decimal(18,10)) 
returns decimal(18,10)
as
begin
    declare @Result decimal(18,10)
    set @Result = (select dbo.fn_sqr(@ax - @bx) + dbo.fn_sqr(@ay - @by) )
    return @Result
end
go

create function fn_DistanceToSegmentSquared(@px decimal(18,10), @py decimal(18,10), @ax decimal(18,10), @ay decimal(18,10), @bx decimal(18,10), @by decimal(18,10)) 
returns decimal(18,10)
as 
begin
    declare @l2 decimal(18,10)
    set @l2 = (select dbo.fn_Distance(@ax, @ay, @bx, @by))
    if @l2 = 0
        return dbo.fn_Distance(@px, @py, @ax, @ay)
    declare @t decimal(18,10)
    set @t = ((@px - @ax) * (@bx - @ax) + (@py - @ay) * (@by - @ay)) / @l2
    if (@t < 0) 
        return dbo.fn_Distance(@px, @py, @ax, @ay);
    if (@t > 1) 
        return dbo.fn_Distance(@px, @py, @bx, @by);
    return dbo.fn_Distance(@px, @py,  @ax + @t * (@bx - @ax),  @ay + @t * (@by - @ay))
end
go

create function fn_DistanceToSegment(@px decimal(18,10), @py decimal(18,10), @ax decimal(18,10), @ay decimal(18,10), @bx decimal(18,10), @by decimal(18,10)) 
returns decimal(18,10)
as 
begin
    return sqrt(dbo.fn_DistanceToSegmentSquared(@px, @py , @ax , @ay , @bx , @by ))
end
go

--example execution for distance from a point at (6,1) to line segment that runs from (4,2) to (2,1)
select dbo.fn_DistanceToSegment(6, 1, 4, 2, 2, 1) 
--result = 2.2360679775

--example execution for distance from a point at (-3,-2) to line segment that runs from (0,-2) to (-2,1)
select dbo.fn_DistanceToSegment(-3, -2, 0, -2, -2, 1) 
--result = 2.4961508830

--example execution for distance from a point at (0,-2) to line segment that runs from (0,-2) to (-2,1)
select dbo.fn_DistanceToSegment(0,-2, 0, -2, -2, 1) 
--result = 0.0000000000
rob mcnicol
la source
4

On dirait que presque tout le monde sur StackOverflow a contribué une réponse (23 réponses jusqu'à présent), alors voici ma contribution pour C #. Ceci est principalement basé sur la réponse de M. Katz, qui à son tour est basée sur la réponse de Grumdrig.

   public struct MyVector
   {
      private readonly double _x, _y;


      // Constructor
      public MyVector(double x, double y)
      {
         _x = x;
         _y = y;
      }


      // Distance from this point to another point, squared
      private double DistanceSquared(MyVector otherPoint)
      {
         double dx = otherPoint._x - this._x;
         double dy = otherPoint._y - this._y;
         return dx * dx + dy * dy;
      }


      // Find the distance from this point to a line segment (which is not the same as from this 
      //  point to anywhere on an infinite line). Also returns the closest point.
      public double DistanceToLineSegment(MyVector lineSegmentPoint1, MyVector lineSegmentPoint2,
                                          out MyVector closestPoint)
      {
         return Math.Sqrt(DistanceToLineSegmentSquared(lineSegmentPoint1, lineSegmentPoint2, 
                          out closestPoint));
      }


      // Same as above, but avoid using Sqrt(), saves a new nanoseconds in cases where you only want 
      //  to compare several distances to find the smallest or largest, but don't need the distance
      public double DistanceToLineSegmentSquared(MyVector lineSegmentPoint1, 
                                              MyVector lineSegmentPoint2, out MyVector closestPoint)
      {
         // Compute length of line segment (squared) and handle special case of coincident points
         double segmentLengthSquared = lineSegmentPoint1.DistanceSquared(lineSegmentPoint2);
         if (segmentLengthSquared < 1E-7f)  // Arbitrary "close enough for government work" value
         {
            closestPoint = lineSegmentPoint1;
            return this.DistanceSquared(closestPoint);
         }

         // Use the magic formula to compute the "projection" of this point on the infinite line
         MyVector lineSegment = lineSegmentPoint2 - lineSegmentPoint1;
         double t = (this - lineSegmentPoint1).DotProduct(lineSegment) / segmentLengthSquared;

         // Handle the two cases where the projection is not on the line segment, and the case where 
         //  the projection is on the segment
         if (t <= 0)
            closestPoint = lineSegmentPoint1;
         else if (t >= 1)
            closestPoint = lineSegmentPoint2;
         else 
            closestPoint = lineSegmentPoint1 + (lineSegment * t);
         return this.DistanceSquared(closestPoint);
      }


      public double DotProduct(MyVector otherVector)
      {
         return this._x * otherVector._x + this._y * otherVector._y;
      }

      public static MyVector operator +(MyVector leftVector, MyVector rightVector)
      {
         return new MyVector(leftVector._x + rightVector._x, leftVector._y + rightVector._y);
      }

      public static MyVector operator -(MyVector leftVector, MyVector rightVector)
      {
         return new MyVector(leftVector._x - rightVector._x, leftVector._y - rightVector._y);
      }

      public static MyVector operator *(MyVector aVector, double aScalar)
      {
         return new MyVector(aVector._x * aScalar, aVector._y * aScalar);
      }

      // Added using ReSharper due to CodeAnalysis nagging

      public bool Equals(MyVector other)
      {
         return _x.Equals(other._x) && _y.Equals(other._y);
      }

      public override bool Equals(object obj)
      {
         if (ReferenceEquals(null, obj)) return false;
         return obj is MyVector && Equals((MyVector) obj);
      }

      public override int GetHashCode()
      {
         unchecked
         {
            return (_x.GetHashCode()*397) ^ _y.GetHashCode();
         }
      }

      public static bool operator ==(MyVector left, MyVector right)
      {
         return left.Equals(right);
      }

      public static bool operator !=(MyVector left, MyVector right)
      {
         return !left.Equals(right);
      }
   }

Et voici un petit programme de test.

   public static class JustTesting
   {
      public static void Main()
      {
         Stopwatch stopwatch = new Stopwatch();
         stopwatch.Start();

         for (int i = 0; i < 10000000; i++)
         {
            TestIt(1, 0, 0, 0, 1, 1, 0.70710678118654757);
            TestIt(5, 4, 0, 0, 20, 10, 1.3416407864998738);
            TestIt(30, 15, 0, 0, 20, 10, 11.180339887498949);
            TestIt(-30, 15, 0, 0, 20, 10, 33.541019662496844);
            TestIt(5, 1, 0, 0, 10, 0, 1.0);
            TestIt(1, 5, 0, 0, 0, 10, 1.0);
         }

         stopwatch.Stop();
         TimeSpan timeSpan = stopwatch.Elapsed;
      }


      private static void TestIt(float aPointX, float aPointY, 
                                 float lineSegmentPoint1X, float lineSegmentPoint1Y, 
                                 float lineSegmentPoint2X, float lineSegmentPoint2Y, 
                                 double expectedAnswer)
      {
         // Katz
         double d1 = DistanceFromPointToLineSegment(new MyVector(aPointX, aPointY), 
                                              new MyVector(lineSegmentPoint1X, lineSegmentPoint1Y), 
                                              new MyVector(lineSegmentPoint2X, lineSegmentPoint2Y));
         Debug.Assert(d1 == expectedAnswer);

         /*
         // Katz using squared distance
         double d2 = DistanceFromPointToLineSegmentSquared(new MyVector(aPointX, aPointY), 
                                              new MyVector(lineSegmentPoint1X, lineSegmentPoint1Y), 
                                              new MyVector(lineSegmentPoint2X, lineSegmentPoint2Y));
         Debug.Assert(Math.Abs(d2 - expectedAnswer * expectedAnswer) < 1E-7f);
          */

         /*
         // Matti (optimized)
         double d3 = FloatVector.DistanceToLineSegment(new PointF(aPointX, aPointY), 
                                                new PointF(lineSegmentPoint1X, lineSegmentPoint1Y), 
                                                new PointF(lineSegmentPoint2X, lineSegmentPoint2Y));
         Debug.Assert(Math.Abs(d3 - expectedAnswer) < 1E-7f);
          */
      }

      private static double DistanceFromPointToLineSegment(MyVector aPoint, 
                                             MyVector lineSegmentPoint1, MyVector lineSegmentPoint2)
      {
         MyVector closestPoint;  // Not used
         return aPoint.DistanceToLineSegment(lineSegmentPoint1, lineSegmentPoint2, 
                                             out closestPoint);
      }

      private static double DistanceFromPointToLineSegmentSquared(MyVector aPoint, 
                                             MyVector lineSegmentPoint1, MyVector lineSegmentPoint2)
      {
         MyVector closestPoint;  // Not used
         return aPoint.DistanceToLineSegmentSquared(lineSegmentPoint1, lineSegmentPoint2, 
                                                    out closestPoint);
      }
   }

Comme vous pouvez le voir, j'ai essayé de mesurer la différence entre l'utilisation de la version qui évite la méthode Sqrt () et la version normale. Mes tests indiquent que vous pouvez peut-être économiser environ 2,5%, mais je n'en suis même pas sûr - les variations au sein des différentes séries de tests étaient du même ordre de grandeur. J'ai également essayé de mesurer la version publiée par Matti (plus une optimisation évidente), et cette version semble être environ 4% plus lente que la version basée sur le code Katz / Grumdrig.

Edit: Par ailleurs, j'ai également essayé de mesurer une méthode qui trouve la distance à une ligne infinie (pas un segment de ligne) en utilisant un produit croisé (et un Sqrt ()), et c'est environ 32% plus rapide.

RenniePet
la source
3

Voici la version C ++ de devnullicus convertie en C #. Pour ma mise en œuvre, j'avais besoin de connaître le point d'intersection et j'ai trouvé sa solution pour bien fonctionner.

public static bool PointSegmentDistanceSquared(PointF point, PointF lineStart, PointF lineEnd, out double distance, out PointF intersectPoint)
{
    const double kMinSegmentLenSquared = 0.00000001; // adjust to suit.  If you use float, you'll probably want something like 0.000001f
    const double kEpsilon = 1.0E-14; // adjust to suit.  If you use floats, you'll probably want something like 1E-7f
    double dX = lineEnd.X - lineStart.X;
    double dY = lineEnd.Y - lineStart.Y;
    double dp1X = point.X - lineStart.X;
    double dp1Y = point.Y - lineStart.Y;
    double segLenSquared = (dX * dX) + (dY * dY);
    double t = 0.0;

    if (segLenSquared >= -kMinSegmentLenSquared && segLenSquared <= kMinSegmentLenSquared)
    {
        // segment is a point.
        intersectPoint = lineStart;
        t = 0.0;
        distance = ((dp1X * dp1X) + (dp1Y * dp1Y));
    }
    else
    {
        // Project a line from p to the segment [p1,p2].  By considering the line
        // extending the segment, parameterized as p1 + (t * (p2 - p1)),
        // we find projection of point p onto the line. 
        // It falls where t = [(p - p1) . (p2 - p1)] / |p2 - p1|^2
        t = ((dp1X * dX) + (dp1Y * dY)) / segLenSquared;
        if (t < kEpsilon)
        {
            // intersects at or to the "left" of first segment vertex (lineStart.X, lineStart.Y).  If t is approximately 0.0, then
            // intersection is at p1.  If t is less than that, then there is no intersection (i.e. p is not within
            // the 'bounds' of the segment)
            if (t > -kEpsilon)
            {
                // intersects at 1st segment vertex
                t = 0.0;
            }
            // set our 'intersection' point to p1.
            intersectPoint = lineStart;
            // Note: If you wanted the ACTUAL intersection point of where the projected lines would intersect if
            // we were doing PointLineDistanceSquared, then intersectPoint.X would be (lineStart.X + (t * dx)) and intersectPoint.Y would be (lineStart.Y + (t * dy)).
        }
        else if (t > (1.0 - kEpsilon))
        {
            // intersects at or to the "right" of second segment vertex (lineEnd.X, lineEnd.Y).  If t is approximately 1.0, then
            // intersection is at p2.  If t is greater than that, then there is no intersection (i.e. p is not within
            // the 'bounds' of the segment)
            if (t < (1.0 + kEpsilon))
            {
                // intersects at 2nd segment vertex
                t = 1.0;
            }
            // set our 'intersection' point to p2.
            intersectPoint = lineEnd;
            // Note: If you wanted the ACTUAL intersection point of where the projected lines would intersect if
            // we were doing PointLineDistanceSquared, then intersectPoint.X would be (lineStart.X + (t * dx)) and intersectPoint.Y would be (lineStart.Y + (t * dy)).
        }
        else
        {
            // The projection of the point to the point on the segment that is perpendicular succeeded and the point
            // is 'within' the bounds of the segment.  Set the intersection point as that projected point.
            intersectPoint = new PointF((float)(lineStart.X + (t * dX)), (float)(lineStart.Y + (t * dY)));
        }
        // return the squared distance from p to the intersection point.  Note that we return the squared distance
        // as an optimization because many times you just need to compare relative distances and the squared values
        // works fine for that.  If you want the ACTUAL distance, just take the square root of this value.
        double dpqX = point.X - intersectPoint.X;
        double dpqY = point.Y - intersectPoint.Y;

        distance = ((dpqX * dpqX) + (dpqY * dpqY));
    }

    return true;
}
headkaze
la source
Fonctionne comme un charme !! M'a sauvé d'innombrables heures. Merci beaucoup!!
Steve Johnson
3

Ici, il utilise Swift

    /* Distance from a point (p1) to line l1 l2 */
func distanceFromPoint(p: CGPoint, toLineSegment l1: CGPoint, and l2: CGPoint) -> CGFloat {
    let A = p.x - l1.x
    let B = p.y - l1.y
    let C = l2.x - l1.x
    let D = l2.y - l1.y

    let dot = A * C + B * D
    let len_sq = C * C + D * D
    let param = dot / len_sq

    var xx, yy: CGFloat

    if param < 0 || (l1.x == l2.x && l1.y == l2.y) {
        xx = l1.x
        yy = l1.y
    } else if param > 1 {
        xx = l2.x
        yy = l2.y
    } else {
        xx = l1.x + param * C
        yy = l1.y + param * D
    }

    let dx = p.x - xx
    let dy = p.y - yy

    return sqrt(dx * dx + dy * dy)
}
OzRunways
la source
3

C #

Adapté de @Grumdrig

public static double MinimumDistanceToLineSegment(this Point p,
    Line line)
{
    var v = line.StartPoint;
    var w = line.EndPoint;

    double lengthSquared = DistanceSquared(v, w);

    if (lengthSquared == 0.0)
        return Distance(p, v);

    double t = Math.Max(0, Math.Min(1, DotProduct(p - v, w - v) / lengthSquared));
    var projection = v + t * (w - v);

    return Distance(p, projection);
}

public static double Distance(Point a, Point b)
{
    return Math.Sqrt(DistanceSquared(a, b));
}

public static double DistanceSquared(Point a, Point b)
{
    var d = a - b;
    return DotProduct(d, d);
}

public static double DotProduct(Point a, Point b)
{
    return (a.X * b.X) + (a.Y * b.Y);
}
Mateen Ulhaq
la source
J'ai essayé ce code, ne semble pas fonctionner correctement. Semble parfois obtenir la mauvaise distance.
WDUK
3

Une solution 2D et 3D

Considérons un changement de base tel que le segment de ligne devienne (0, 0, 0)-(d, 0, 0)et le point (u, v, 0). La distance la plus courte se produit dans ce plan et est donnée par

    u ≤ 0 -> d(A, C)
0 ≤ u ≤ d -> |v|
d ≤ u     -> d(B, C)

(la distance à l'un des points d'extrémité ou à la ligne de support, selon la projection sur la ligne. Le locus iso-distance est composé de deux demi-cercles et de deux segments de ligne.)

entrez la description de l'image ici

Dans l'expression ci-dessus, d est la longueur du segment AB, et u, v sont respectivement le produit scalaire et (module du) produit croisé de AB / d (vecteur unitaire dans la direction de AB) et AC. D'où vectorialement,

AB.AC ≤ 0             -> |AC|
    0 ≤ AB.AC ≤ AB²   -> |ABxAC|/|AB|
          AB² ≤ AB.AC -> |BC|
Yves Daoust
la source
2

voir la boîte à outils Matlab GEOMETRY sur le site Web suivant: http://people.sc.fsu.edu/~jburkardt/m_src/geometry/geometry.html

ctrl + f et tapez "segment" pour trouver les fonctions liées au segment de ligne. les fonctions "segment_point_dist_2d.m" et "segment_point_dist_3d.m" sont ce dont vous avez besoin.

Les codes GÉOMÉTRIE sont disponibles en version C et en version C ++ et en version FORTRAN77 et en version FORTRAN90 et en version MATLAB.

Lis
la source
2

Version AutoHotkeys basée sur le Javascript de Joshua:

plDist(x, y, x1, y1, x2, y2) {
    A:= x - x1
    B:= y - y1
    C:= x2 - x1
    D:= y2 - y1

    dot:= A*C + B*D
    sqLen:= C*C + D*D
    param:= dot / sqLen

    if (param < 0 || ((x1 = x2) && (y1 = y2))) {
        xx:= x1
        yy:= y1
    } else if (param > 1) {
        xx:= x2
        yy:= y2
    } else {
        xx:= x1 + param*C
        yy:= y1 + param*D
    }

    dx:= x - xx
    dy:= y - yy

    return sqrt(dx*dx + dy*dy)
}
Chronocide
la source
2

Je n'ai pas vu d'implémentation Java ici, j'ai donc traduit la fonction Javascript de la réponse acceptée au code Java:

static double sqr(double x) {
    return x * x;
}
static double dist2(DoublePoint v, DoublePoint w) {
    return sqr(v.x - w.x) + sqr(v.y - w.y);
}
static double distToSegmentSquared(DoublePoint p, DoublePoint v, DoublePoint w) {
    double l2 = dist2(v, w);
    if (l2 == 0) return dist2(p, v);
    double t = ((p.x - v.x) * (w.x - v.x) + (p.y - v.y) * (w.y - v.y)) / l2;
    if (t < 0) return dist2(p, v);
    if (t > 1) return dist2(p, w);
    return dist2(p, new DoublePoint(
            v.x + t * (w.x - v.x),
            v.y + t * (w.y - v.y)
    ));
}
static double distToSegment(DoublePoint p, DoublePoint v, DoublePoint w) {
    return Math.sqrt(distToSegmentSquared(p, v, w));
}
static class DoublePoint {
    public double x;
    public double y;

    public DoublePoint(double x, double y) {
        this.x = x;
        this.y = y;
    }
}
Yury Fedorov
la source
2

Version WPF:

public class LineSegment
{
    private readonly Vector _offset;
    private readonly Vector _vector;

    public LineSegment(Point start, Point end)
    {
        _offset = (Vector)start;
        _vector = (Vector)(end - _offset);
    }

    public double DistanceTo(Point pt)
    {
        var v = (Vector)pt - _offset;

        // first, find a projection point on the segment in parametric form (0..1)
        var p = (v * _vector) / _vector.LengthSquared;

        // and limit it so it lays inside the segment
        p = Math.Min(Math.Max(p, 0), 1);

        // now, find the distance from that point to our point
        return (_vector * p - v).Length;
    }
}
torvin
la source
1

Voici le code que j'ai fini par écrire. Ce code suppose qu'un point est défini sous la forme de {x:5, y:7}. Notez que ce n'est pas le moyen le plus efficace, mais c'est le code le plus simple et le plus facile à comprendre que j'ai pu trouver.

// a, b, and c in the code below are all points

function distance(a, b)
{
    var dx = a.x - b.x;
    var dy = a.y - b.y;
    return Math.sqrt(dx*dx + dy*dy);
}

function Segment(a, b)
{
    var ab = {
        x: b.x - a.x,
        y: b.y - a.y
    };
    var length = distance(a, b);

    function cross(c) {
        return ab.x * (c.y-a.y) - ab.y * (c.x-a.x);
    };

    this.distanceFrom = function(c) {
        return Math.min(distance(a,c),
                        distance(b,c),
                        Math.abs(cross(c) / length));
    };
}
Eli Courtwright
la source
1
Ce code a un bug. Un point proche de la ligne sur laquelle se trouve le segment, mais loin d'une extrémité du segment, serait incorrectement jugé proche du segment.
Grumdrig
Intéressant, j'examinerai cela la prochaine fois que je travaillerai sur cette base de code pour confirmer votre affirmation. Merci pour le conseil.
Eli Courtwright
1

La fonction ci-dessus ne fonctionne pas sur les lignes verticales. Voici une fonction qui fonctionne bien! Ligne avec les points p1, p2. et CheckPoint est p;

public float DistanceOfPointToLine2(PointF p1, PointF p2, PointF p)
{
  //          (y1-y2)x + (x2-x1)y + (x1y2-x2y1)
  //d(P,L) = --------------------------------
  //         sqrt( (x2-x1)pow2 + (y2-y1)pow2 )

  double ch = (p1.Y - p2.Y) * p.X + (p2.X - p1.X) * p.Y + (p1.X * p2.Y - p2.X * p1.Y);
  double del = Math.Sqrt(Math.Pow(p2.X - p1.X, 2) + Math.Pow(p2.Y - p1.Y, 2));
  double d = ch / del;
  return (float)d;
}
Dmitry
la source
Ne répond pas à la question. Cela ne fonctionne que pour les lignes (celles qui s'étendent à l'infini dans l'espace) et non pour les segments de ligne (qui ont une longueur finie).
Trinidad
"ci-dessus" est une référence ambiguë. (
Cela m'irrite
1

Voici la même chose que la réponse C ++ mais portée sur pascal. L'ordre du paramètre point a changé pour s'adapter à mon code mais c'est la même chose.

function Dot(const p1, p2: PointF): double;
begin
  Result := p1.x * p2.x + p1.y * p2.y;
end;
function SubPoint(const p1, p2: PointF): PointF;
begin
  result.x := p1.x - p2.x;
  result.y := p1.y - p2.y;
end;

function ShortestDistance2(const p,v,w : PointF) : double;
var
  l2,t : double;
  projection,tt: PointF;
begin
  // Return minimum distance between line segment vw and point p
  //l2 := length_squared(v, w);  // i.e. |w-v|^2 -  avoid a sqrt
  l2 := Distance(v,w);
  l2 := MPower(l2,2);
  if (l2 = 0.0) then begin
    result:= Distance(p, v);   // v == w case
    exit;
  end;
  // Consider the line extending the segment, parameterized as v + t (w - v).
  // We find projection of point p onto the line.
  // It falls where t = [(p-v) . (w-v)] / |w-v|^2
  t := Dot(SubPoint(p,v),SubPoint(w,v)) / l2;
  if (t < 0.0) then begin
    result := Distance(p, v);       // Beyond the 'v' end of the segment
    exit;
  end
  else if (t > 1.0) then begin
    result := Distance(p, w);  // Beyond the 'w' end of the segment
    exit;
  end;
  //projection := v + t * (w - v);  // Projection falls on the segment
  tt.x := v.x + t * (w.x - v.x);
  tt.y := v.y + t * (w.y - v.y);
  result := Distance(p, tt);
end;
user1401452
la source
Il y a plusieurs problèmes avec cette réponse: Le type PointF n'est pas déclaré (c'est peut-être un type standard dans certaines implémentations Pascal). C'est probablement un record x, y: double; fin; 2. les fonctions Distance et MPower ne sont pas déclarées et il n'y a aucune explication sur ce qu'elles font (on peut deviner, oui). 3. La projection variable est déclarée mais jamais utilisée. Globalement, cela en fait une réponse plutôt médiocre.
dummzeuch