Altair propose une marque d'image qui peut être utilisée si vous souhaitez tracer des images disponibles sur une URL; par exemple:
import altair as alt
import pandas as pd
source = pd.DataFrame.from_records([
{"x": 0.5, "y": 0.5, "img": "https://vega.github.io/vega-datasets/data/ffox.png"},
{"x": 1.5, "y": 1.5, "img": "https://vega.github.io/vega-datasets/data/gimp.png"},
{"x": 2.5, "y": 2.5, "img": "https://vega.github.io/vega-datasets/data/7zip.png"}
])
alt.Chart(source).mark_image(
width=50,
height=50
).encode(
x='x',
y='y',
url='img'
)
Altair n'est pas aussi bien adapté à l'affichage de tableaux de données bidimensionnels que les images, car la grammaire est principalement conçue pour fonctionner avec des données tabulaires structurées. Cependant, il est possible de le faire en utilisant une combinaison de transformations d'aplatissement et de transformations de fenêtre .
Voici un exemple utilisant les données de la page à laquelle vous avez lié:
import altair as alt
import pandas as pd
from sklearn.datasets import fetch_lfw_people
faces = fetch_lfw_people(min_faces_per_person=60)
data = pd.DataFrame({
'image': list(faces.images[:12]) # list of 2D arrays
})
alt.Chart(data).transform_window(
index='count()' # number each of the images
).transform_flatten(
['image'] # extract rows from each image
).transform_window(
row='count()', # number the rows...
groupby=['index'] # ...within each image
).transform_flatten(
['image'] # extract the values from each row
).transform_window(
column='count()', # number the columns...
groupby=['index', 'row'] # ...within each row & image
).mark_rect().encode(
alt.X('column:O', axis=None),
alt.Y('row:O', axis=None),
alt.Color('image:Q',
scale=alt.Scale(scheme=alt.SchemeParams('greys', extent=[1, 0])),
legend=None
),
alt.Facet('index:N', columns=4)
).properties(
width=100,
height=120
)