Dans mon application, j'essaie de faire la reconnaissance faciale sur une image spécifique en utilisant Open CV, ici d'abord je forme une image, puis après la formation de cette image si je lance la reconnaissance faciale sur cette image, elle reconnaît avec succès ce visage formé. Cependant, lorsque je me tourne vers une autre image de la même personne, la reconnaissance ne fonctionne pas. Cela fonctionne juste sur l'image entraînée, donc ma question est de savoir comment la rectifier?
Mise à jour: ce que je veux faire, c'est que l'utilisateur sélectionne l'image d'une personne dans le stockage, puis après la formation de cette image sélectionnée, je veux récupérer toutes les images du stockage qui correspondent au visage de mon image formée
Voici ma classe d'activité:
public class MainActivity extends AppCompatActivity {
private Mat rgba,gray;
private CascadeClassifier classifier;
private MatOfRect faces;
private ArrayList<Mat> images;
private ArrayList<String> imagesLabels;
private Storage local;
ImageView mimage;
Button prev,next;
ArrayList<Integer> imgs;
private int label[] = new int[1];
private double predict[] = new double[1];
Integer pos = 0;
private String[] uniqueLabels;
FaceRecognizer recognize;
private boolean trainfaces() {
if(images.isEmpty())
return false;
List<Mat> imagesMatrix = new ArrayList<>();
for (int i = 0; i < images.size(); i++)
imagesMatrix.add(images.get(i));
Set<String> uniqueLabelsSet = new HashSet<>(imagesLabels); // Get all unique labels
uniqueLabels = uniqueLabelsSet.toArray(new String[uniqueLabelsSet.size()]); // Convert to String array, so we can read the values from the indices
int[] classesNumbers = new int[uniqueLabels.length];
for (int i = 0; i < classesNumbers.length; i++)
classesNumbers[i] = i + 1; // Create incrementing list for each unique label starting at 1
int[] classes = new int[imagesLabels.size()];
for (int i = 0; i < imagesLabels.size(); i++) {
String label = imagesLabels.get(i);
for (int j = 0; j < uniqueLabels.length; j++) {
if (label.equals(uniqueLabels[j])) {
classes[i] = classesNumbers[j]; // Insert corresponding number
break;
}
}
}
Mat vectorClasses = new Mat(classes.length, 1, CvType.CV_32SC1); // CV_32S == int
vectorClasses.put(0, 0, classes); // Copy int array into a vector
recognize = LBPHFaceRecognizer.create(3,8,8,8,200);
recognize.train(imagesMatrix, vectorClasses);
if(SaveImage())
return true;
return false;
}
public void cropedImages(Mat mat) {
Rect rect_Crop=null;
for(Rect face: faces.toArray()) {
rect_Crop = new Rect(face.x, face.y, face.width, face.height);
}
Mat croped = new Mat(mat, rect_Crop);
images.add(croped);
}
public boolean SaveImage() {
File path = new File(Environment.getExternalStorageDirectory(), "TrainedData");
path.mkdirs();
String filename = "lbph_trained_data.xml";
File file = new File(path, filename);
recognize.save(file.toString());
if(file.exists())
return true;
return false;
}
private BaseLoaderCallback callbackLoader = new BaseLoaderCallback(this) {
@Override
public void onManagerConnected(int status) {
switch(status) {
case BaseLoaderCallback.SUCCESS:
faces = new MatOfRect();
//reset
images = new ArrayList<Mat>();
imagesLabels = new ArrayList<String>();
local.putListMat("images", images);
local.putListString("imagesLabels", imagesLabels);
images = local.getListMat("images");
imagesLabels = local.getListString("imagesLabels");
break;
default:
super.onManagerConnected(status);
break;
}
}
};
@Override
protected void onResume() {
super.onResume();
if(OpenCVLoader.initDebug()) {
Log.i("hmm", "System Library Loaded Successfully");
callbackLoader.onManagerConnected(BaseLoaderCallback.SUCCESS);
} else {
Log.i("hmm", "Unable To Load System Library");
OpenCVLoader.initAsync(OpenCVLoader.OPENCV_VERSION, this, callbackLoader);
}
}
@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);
prev = findViewById(R.id.btprev);
next = findViewById(R.id.btnext);
mimage = findViewById(R.id.mimage);
local = new Storage(this);
imgs = new ArrayList();
imgs.add(R.drawable.jonc);
imgs.add(R.drawable.jonc2);
imgs.add(R.drawable.randy1);
imgs.add(R.drawable.randy2);
imgs.add(R.drawable.imgone);
imgs.add(R.drawable.imagetwo);
mimage.setBackgroundResource(imgs.get(pos));
prev.setOnClickListener(new View.OnClickListener() {
@Override
public void onClick(View view) {
if(pos!=0){
pos--;
mimage.setBackgroundResource(imgs.get(pos));
}
}
});
next.setOnClickListener(new View.OnClickListener() {
@Override
public void onClick(View view) {
if(pos<5){
pos++;
mimage.setBackgroundResource(imgs.get(pos));
}
}
});
Button train = (Button)findViewById(R.id.btn_train);
train.setOnClickListener(new View.OnClickListener() {
@RequiresApi(api = Build.VERSION_CODES.KITKAT)
@Override
public void onClick(View view) {
rgba = new Mat();
gray = new Mat();
Mat mGrayTmp = new Mat();
Mat mRgbaTmp = new Mat();
classifier = FileUtils.loadXMLS(MainActivity.this);
Bitmap icon = BitmapFactory.decodeResource(getResources(),
imgs.get(pos));
Bitmap bmp32 = icon.copy(Bitmap.Config.ARGB_8888, true);
Utils.bitmapToMat(bmp32, mGrayTmp);
Utils.bitmapToMat(bmp32, mRgbaTmp);
Imgproc.cvtColor(mGrayTmp, mGrayTmp, Imgproc.COLOR_BGR2GRAY);
Imgproc.cvtColor(mRgbaTmp, mRgbaTmp, Imgproc.COLOR_BGRA2RGBA);
/*Core.transpose(mGrayTmp, mGrayTmp); // Rotate image
Core.flip(mGrayTmp, mGrayTmp, -1); // Flip along both*/
gray = mGrayTmp;
rgba = mRgbaTmp;
Imgproc.resize(gray, gray, new Size(200,200.0f/ ((float)gray.width()/ (float)gray.height())));
if(gray.total() == 0)
Toast.makeText(getApplicationContext(), "Can't Detect Faces", Toast.LENGTH_SHORT).show();
classifier.detectMultiScale(gray,faces,1.1,3,0|CASCADE_SCALE_IMAGE, new Size(30,30));
if(!faces.empty()) {
if(faces.toArray().length > 1)
Toast.makeText(getApplicationContext(), "Mutliple Faces Are not allowed", Toast.LENGTH_SHORT).show();
else {
if(gray.total() == 0) {
Log.i("hmm", "Empty gray image");
return;
}
cropedImages(gray);
imagesLabels.add("Baby");
Toast.makeText(getApplicationContext(), "Picture Set As Baby", Toast.LENGTH_LONG).show();
if (images != null && imagesLabels != null) {
local.putListMat("images", images);
local.putListString("imagesLabels", imagesLabels);
Log.i("hmm", "Images have been saved");
if(trainfaces()) {
images.clear();
imagesLabels.clear();
}
}
}
}else {
/* Bitmap bmp = null;
Mat tmp = new Mat(250, 250, CvType.CV_8U, new Scalar(4));
try {
//Imgproc.cvtColor(seedsImage, tmp, Imgproc.COLOR_RGB2BGRA);
Imgproc.cvtColor(gray, tmp, Imgproc.COLOR_GRAY2RGBA, 4);
bmp = Bitmap.createBitmap(tmp.cols(), tmp.rows(), Bitmap.Config.ARGB_8888);
Utils.matToBitmap(tmp, bmp);
} catch (CvException e) {
Log.d("Exception", e.getMessage());
}*/
/* mimage.setImageBitmap(bmp);*/
Toast.makeText(getApplicationContext(), "Unknown Face", Toast.LENGTH_SHORT).show();
}
}
});
Button recognize = (Button)findViewById(R.id.btn_recognize);
recognize.setOnClickListener(new View.OnClickListener() {
@Override
public void onClick(View view) {
if(loadData())
Log.i("hmm", "Trained data loaded successfully");
rgba = new Mat();
gray = new Mat();
faces = new MatOfRect();
Mat mGrayTmp = new Mat();
Mat mRgbaTmp = new Mat();
classifier = FileUtils.loadXMLS(MainActivity.this);
Bitmap icon = BitmapFactory.decodeResource(getResources(),
imgs.get(pos));
Bitmap bmp32 = icon.copy(Bitmap.Config.ARGB_8888, true);
Utils.bitmapToMat(bmp32, mGrayTmp);
Utils.bitmapToMat(bmp32, mRgbaTmp);
Imgproc.cvtColor(mGrayTmp, mGrayTmp, Imgproc.COLOR_BGR2GRAY);
Imgproc.cvtColor(mRgbaTmp, mRgbaTmp, Imgproc.COLOR_BGRA2RGBA);
/*Core.transpose(mGrayTmp, mGrayTmp); // Rotate image
Core.flip(mGrayTmp, mGrayTmp, -1); // Flip along both*/
gray = mGrayTmp;
rgba = mRgbaTmp;
Imgproc.resize(gray, gray, new Size(200,200.0f/ ((float)gray.width()/ (float)gray.height())));
if(gray.total() == 0)
Toast.makeText(getApplicationContext(), "Can't Detect Faces", Toast.LENGTH_SHORT).show();
classifier.detectMultiScale(gray,faces,1.1,3,0|CASCADE_SCALE_IMAGE, new Size(30,30));
if(!faces.empty()) {
if(faces.toArray().length > 1)
Toast.makeText(getApplicationContext(), "Mutliple Faces Are not allowed", Toast.LENGTH_SHORT).show();
else {
if(gray.total() == 0) {
Log.i("hmm", "Empty gray image");
return;
}
recognizeImage(gray);
}
}else {
Toast.makeText(getApplicationContext(), "Unknown Face", Toast.LENGTH_SHORT).show();
}
}
});
}
private void recognizeImage(Mat mat) {
Rect rect_Crop=null;
for(Rect face: faces.toArray()) {
rect_Crop = new Rect(face.x, face.y, face.width, face.height);
}
Mat croped = new Mat(mat, rect_Crop);
recognize.predict(croped, label, predict);
int indice = (int)predict[0];
Log.i("hmmcheck:",String.valueOf(label[0])+" : "+String.valueOf(indice));
if(label[0] != -1 && indice < 125)
Toast.makeText(getApplicationContext(), "Welcome "+uniqueLabels[label[0]-1]+"", Toast.LENGTH_SHORT).show();
else
Toast.makeText(getApplicationContext(), "You're not the right person", Toast.LENGTH_SHORT).show();
}
private boolean loadData() {
String filename = FileUtils.loadTrained();
if(filename.isEmpty())
return false;
else
{
recognize.read(filename);
return true;
}
}
}
My File Utils Class:
public class FileUtils {
private static String TAG = FileUtils.class.getSimpleName();
private static boolean loadFile(Context context, String cascadeName) {
InputStream inp = null;
OutputStream out = null;
boolean completed = false;
try {
inp = context.getResources().getAssets().open(cascadeName);
File outFile = new File(context.getCacheDir(), cascadeName);
out = new FileOutputStream(outFile);
byte[] buffer = new byte[4096];
int bytesread;
while((bytesread = inp.read(buffer)) != -1) {
out.write(buffer, 0, bytesread);
}
completed = true;
inp.close();
out.flush();
out.close();
} catch (IOException e) {
Log.i(TAG, "Unable to load cascade file" + e);
}
return completed;
}
public static CascadeClassifier loadXMLS(Activity activity) {
InputStream is = activity.getResources().openRawResource(R.raw.lbpcascade_frontalface);
File cascadeDir = activity.getDir("cascade", Context.MODE_PRIVATE);
File mCascadeFile = new File(cascadeDir, "lbpcascade_frontalface_improved.xml");
FileOutputStream os = null;
try {
os = new FileOutputStream(mCascadeFile);
byte[] buffer = new byte[4096];
int bytesRead;
while ((bytesRead = is.read(buffer)) != -1) {
os.write(buffer, 0, bytesRead);
}
is.close();
os.close();
} catch (FileNotFoundException e) {
e.printStackTrace();
} catch (IOException e) {
e.printStackTrace();
}
return new CascadeClassifier(mCascadeFile.getAbsolutePath());
}
public static String loadTrained() {
File file = new File(Environment.getExternalStorageDirectory(), "TrainedData/lbph_trained_data.xml");
return file.toString();
}
}
Ce sont les images que j'essaie de comparer ici, le visage d'une personne est toujours le même en reconnaissance, il ne correspond pas!
la source
Réponses:
Mise à jour
Selon le nouveau montage de la question, vous avez besoin d'un moyen d'identifier à la volée de nouvelles personnes dont les photos pourraient ne pas être disponibles pendant la phase de formation du modèle. Ces tâches sont appelées apprentissage en quelques coups . Cela est similaire aux exigences des services de renseignement / de police pour trouver leurs cibles à l'aide de séquences de caméras de vidéosurveillance. Comme il n'y a généralement pas assez d'images d'une cible spécifique, pendant la formation, ils utilisent des modèles tels que FaceNet . Je suggère vraiment de lire le document, cependant, j'explique quelques-uns de ses points forts ici:
Une implémentation de FaceNet peut être trouvée ici . Je vous suggère d'essayer de l'exécuter sur votre ordinateur pour savoir à quoi vous avez réellement affaire. Après cela, il est préférable de procéder comme suit:
Réponse originale
Vous êtes tombé sur l'un des défis les plus courants de l'apprentissage automatique: le sur-ajustement. La détection et la reconnaissance des visages sont un vaste domaine de recherche en soi et presque tous les modèles raisonnablement précis utilisent une sorte d'apprentissage en profondeur. Notez que même détecter un visage avec précision n'est pas aussi facile qu'il y paraît, cependant, comme vous le faites sur Android, vous pouvez utiliser l' API Face pour cette tâche. (Autres techniques plus avancées telles que MTCNN sont trop lentes / difficiles à déployer sur un combiné). Il a été démontré que le simple fait d'alimenter le modèle avec une photo de visage avec beaucoup de bruit de fond ou plusieurs personnes à l'intérieur ne fonctionne pas. Donc, vous ne pouvez vraiment pas sauter cette étape.
Après avoir obtenu un joli visage taillé des cibles candidates de l'arrière-plan, vous devez surmonter le défi de reconnaître les visages détectés. Encore une fois, tous les modèles compétents, à ma connaissance, utilisent une sorte de réseau neuronal d'apprentissage profond / convolutionnel. Les utiliser sur un téléphone mobile est un défi, mais grâce à Tensorflow Lite, vous pouvez les réduire et les exécuter dans votre application. Un projet sur la reconnaissance faciale sur les téléphones Android sur lequel j'avais travaillé est ici que vous pouvez vérifier. Gardez à l'esprit que tout bon modèle doit être formé sur de nombreuses instances de données étiquetées, mais il existe une pléthore de modèles déjà formés sur de grands ensembles de données de visages ou d'autres tâches de reconnaissance d'image, pour les ajuster et utiliser leurs connaissances existantes, nous pouvons utilisertransfert d'apprentissage , pour un démarrage rapide sur la détection d'objets et transfert d'apprentissage qui est étroitement lié à votre cas, consultez cet article de blog.
Dans l'ensemble, vous devez obtenir de nombreuses instances des visages que vous souhaitez détecter ainsi que de nombreuses photos de visages de personnes qui ne vous intéressent pas, puis vous devez former un modèle basé sur les ressources susmentionnées, puis vous devez utilisez TensorFlow lite pour réduire sa taille et l'intégrer dans votre application. Ensuite, pour chaque image, vous appelez Android Face API et introduisez (le visage probablement détecté) dans le modèle et identifiez la personne.
En fonction de votre niveau de tolérance au retard et du nombre de tailles de jeu d'entraînement et de cibles, vous pouvez obtenir différents résultats.Cependant, une précision de% 90 + est facilement réalisable si vous n'avez que quelques personnes cibles.
la source
Si je comprends bien, vous entraînez le classificateur avec une seule image. Dans ce cas, cette image spécifique est tout ce que le classifieur pourra jamais reconnaître. Vous auriez besoin d'un ensemble de photos d'entraînement sensiblement plus grand montrant la même personne, quelque chose comme 5 ou 10 images différentes au moins.
la source
train()
: docs.opencv.org/3.4/dd/d65/…1) Modifiez la valeur de seuil lors de l'initialisation de LBPHrecognizer en -> LBPHFaceRecognizer (1, 8, 8, 8, 100)
2) entraînez chaque visage avec au moins 2-3 images, car ces dispositifs de reconnaissance fonctionnent principalement sur la comparaison
3) Définissez le seuil de précision lors de la reconnaissance. Faites quelque chose comme ça:
la source