Je me tape la tête contre le mur ici, alors j'espère que certains d'entre vous pourront me renseigner. Je faisais des tests de performances en utilisant BenchmarkDotNet et je suis tombé sur ce cas étrange où il semble que déclarer un membre const
dégrade considérablement les performances.
using BenchmarkDotNet.Attributes;
using BenchmarkDotNet.Running;
using System;
namespace PerfTest
{
[DisassemblyDiagnoser(printAsm: true, printSource: true)]
public class Test
{
private int[] data;
private int Threshold = 90;
private const int ConstThreshold = 90;
[GlobalSetup]
public void GlobalSetup()
{
data = new int[1000];
var random = new Random(42);
for (var i = 0; i < data.Length; i++)
{
data[i] = random.Next(100);
}
}
static void Main(string[] args)
{
var summary = BenchmarkRunner.Run<Test>();
}
[Benchmark(Baseline = true)]
public void ClampToMemberValue()
{
for (var i = 0; i < data.Length; i++)
{
if (data[i] > Threshold) data[i] = Threshold;
}
}
[Benchmark]
public void ClampToConstValue()
{
for (var i = 0; i < data.Length; i++)
{
if (data[i] > ConstThreshold) data[i] = ConstThreshold;
}
}
}
}
Notez que la seule différence entre les deux méthodes de test est de savoir si elles se comparent à une variable membre régulière ou à un membre const.
Selon BenchmarkDotNet, l'utilisation de la valeur const est beaucoup plus lente et je ne comprends pas pourquoi.
BenchmarkDotNet=v0.11.5, OS=Windows 10.0.18362
Intel Core i7-5820K CPU 3.30GHz (Broadwell), 1 CPU, 12 logical and 6 physical cores
.NET Core SDK=3.0.100
[Host] : .NET Core 3.0.0 (CoreCLR 4.700.19.46205, CoreFX 4.700.19.46214), 64bit RyuJIT
DefaultJob : .NET Core 3.0.0 (CoreCLR 4.700.19.46205, CoreFX 4.700.19.46214), 64bit RyuJIT
| Method | Mean | Error | StdDev | Ratio |
|------------------- |---------:|---------:|---------:|------:|
| ClampToMemberValue | 590.4 ns | 1.980 ns | 1.852 ns | 1.00 |
| ClampToConstValue | 724.6 ns | 4.184 ns | 3.709 ns | 1.23 |
La lecture du code compilé JIT ne l'explique pas pour autant que je sache. Voici le code des deux méthodes. La seule différence est de savoir si la comparaison est effectuée par rapport à un registre ou à un littéral.
00007ff9`7f1b8500 PerfTest.Test.ClampToMemberValue()
for (var i = 0; i < data.Length; i++)
^^^^^^^^^
00007ff9`7f1b8504 33c0 xor eax,eax
for (var i = 0; i < data.Length; i++)
^^^^^^^^^^^^^^^
00007ff9`7f1b8506 488b5108 mov rdx,qword ptr [rcx+8]
00007ff9`7f1b850a 837a0800 cmp dword ptr [rdx+8],0
00007ff9`7f1b850e 7e2e jle 00007ff9`7f1b853e
00007ff9`7f1b8510 8b4910 mov ecx,dword ptr [rcx+10h]
if (data[i] > Threshold) data[i] = Threshold;
^^^^^^^^^^^^^^^^^^^^^^^^
00007ff9`7f1b8513 4c8bc2 mov r8,rdx
00007ff9`7f1b8516 458b4808 mov r9d,dword ptr [r8+8]
00007ff9`7f1b851a 413bc1 cmp eax,r9d
00007ff9`7f1b851d 7324 jae 00007ff9`7f1b8543
00007ff9`7f1b851f 4c63c8 movsxd r9,eax
00007ff9`7f1b8522 43394c8810 cmp dword ptr [r8+r9*4+10h],ecx
00007ff9`7f1b8527 7e0e jle 00007ff9`7f1b8537
if (data[i] > Threshold) data[i] = Threshold;
^^^^^^^^^^^^^^^^^^^^
00007ff9`7f1b8529 4c8bc2 mov r8,rdx
00007ff9`7f1b852c 448bc9 mov r9d,ecx
00007ff9`7f1b852f 4c63d0 movsxd r10,eax
00007ff9`7f1b8532 47894c9010 mov dword ptr [r8+r10*4+10h],r9d
for (var i = 0; i < data.Length; i++)
^^^
00007ff9`7f1b8537 ffc0 inc eax
00007ff9`7f1b8539 394208 cmp dword ptr [rdx+8],eax
00007ff9`7f1b853c 7fd5 jg 00007ff9`7f1b8513
}
^
00007ff9`7f1b853e 4883c428 add rsp,28h
et
00007ff9`7f1a8500 PerfTest.Test.ClampToConstValue()
for (var i = 0; i < data.Length; i++)
^^^^^^^^^
00007ff9`7f1a8504 33c0 xor eax,eax
for (var i = 0; i < data.Length; i++)
^^^^^^^^^^^^^^^
00007ff9`7f1a8506 488b5108 mov rdx,qword ptr [rcx+8]
00007ff9`7f1a850a 837a0800 cmp dword ptr [rdx+8],0
00007ff9`7f1a850e 7e2d jle 00007ff9`7f1a853d
if (data[i] > ConstThreshold) data[i] = ConstThreshold;
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
00007ff9`7f1a8510 488bca mov rcx,rdx
00007ff9`7f1a8513 448b4108 mov r8d,dword ptr [rcx+8]
00007ff9`7f1a8517 413bc0 cmp eax,r8d
00007ff9`7f1a851a 7326 jae 00007ff9`7f1a8542
00007ff9`7f1a851c 4c63c0 movsxd r8,eax
00007ff9`7f1a851f 42837c81105a cmp dword ptr [rcx+r8*4+10h],5Ah
00007ff9`7f1a8525 7e0f jle 00007ff9`7f1a8536
if (data[i] > ConstThreshold) data[i] = ConstThreshold;
^^^^^^^^^^^^^^^^^^^^^^^^^
00007ff9`7f1a8527 488bca mov rcx,rdx
00007ff9`7f1a852a 4c63c0 movsxd r8,eax
00007ff9`7f1a852d 42c74481105a000000 mov dword ptr [rcx+r8*4+10h],5Ah
for (var i = 0; i < data.Length; i++)
^^^
00007ff9`7f1a8536 ffc0 inc eax
00007ff9`7f1a8538 394208 cmp dword ptr [rdx+8],eax
00007ff9`7f1a853b 7fd3 jg 00007ff9`7f1a8510
}
^
00007ff9`7f1a853d 4883c428 add rsp,28h
Je suis sûr qu'il y a quelque chose que j'ai oublié, mais je ne peux pas le comprendre à ce stade, donc je cherche des commentaires sur ce qui peut expliquer cela.
la source
cmp
etmov
qui sont utilisées pour le chemin const occupent plus de mémoire qu'une instruction basée sur un registre car le codage d'un nombre nécessite des octets supplémentaires et au total, il faut plus de cycles CPU à exécuter (9 octets contre 5 octets pourmov
et 6 octets contre 5 octets pour cmp) . Et même s'il existe desmov ecx,dword ptr [rcx+10h]
instructions supplémentaires pour la version non-const, elle est très probablement optimisée par le compilateur JIT pour être en dehors de la boucle dans la version finale.Réponses:
En regardant https://benchmarkdotnet.org/articles/features/setup-and-cleanup.html
Je pense que vous devriez utiliser
[IterationSetup]
au lieu de[GlobalSetup]
. Avec la configuration globale, ledata
est modifié une fois, puis le changementdata
est réutilisé dans les tests de performance.J'ai donc changé le code pour utiliser une bonne initialisation. Variables modifiées pour rendre les contrôles plus fréquents. Et ajouté quelques variantes supplémentaires.
Les résultats semblent plus normaux:
Il ne semble pas y avoir de différence entre les différentes variantes. Soit tout est optimisé, soit const int pas optimisé en aucune façon dans ce scénario.
la source
GlobalSetup
est exécuté deux fois, une fois avant chaque Benchmark, donc les deux méthodes commencent avec la même condition préalable.