J'ai des données binaires dans une variable char non signée. Je dois les convertir en PEM base64 dans c. J'ai regardé dans la bibliothèque openssl mais je n'ai trouvé aucune fonction. Quelqu'un at-il une idée?
J'ai des données binaires dans une variable char non signée. Je dois les convertir en PEM base64 dans c. J'ai regardé dans la bibliothèque openssl mais je n'ai trouvé aucune fonction. Quelqu'un at-il une idée?
Voici celui que j'utilise:
#include <stdint.h>
#include <stdlib.h>
static char encoding_table[] = {'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H',
'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P',
'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X',
'Y', 'Z', 'a', 'b', 'c', 'd', 'e', 'f',
'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n',
'o', 'p', 'q', 'r', 's', 't', 'u', 'v',
'w', 'x', 'y', 'z', '0', '1', '2', '3',
'4', '5', '6', '7', '8', '9', '+', '/'};
static char *decoding_table = NULL;
static int mod_table[] = {0, 2, 1};
char *base64_encode(const unsigned char *data,
size_t input_length,
size_t *output_length) {
*output_length = 4 * ((input_length + 2) / 3);
char *encoded_data = malloc(*output_length);
if (encoded_data == NULL) return NULL;
for (int i = 0, j = 0; i < input_length;) {
uint32_t octet_a = i < input_length ? (unsigned char)data[i++] : 0;
uint32_t octet_b = i < input_length ? (unsigned char)data[i++] : 0;
uint32_t octet_c = i < input_length ? (unsigned char)data[i++] : 0;
uint32_t triple = (octet_a << 0x10) + (octet_b << 0x08) + octet_c;
encoded_data[j++] = encoding_table[(triple >> 3 * 6) & 0x3F];
encoded_data[j++] = encoding_table[(triple >> 2 * 6) & 0x3F];
encoded_data[j++] = encoding_table[(triple >> 1 * 6) & 0x3F];
encoded_data[j++] = encoding_table[(triple >> 0 * 6) & 0x3F];
}
for (int i = 0; i < mod_table[input_length % 3]; i++)
encoded_data[*output_length - 1 - i] = '=';
return encoded_data;
}
unsigned char *base64_decode(const char *data,
size_t input_length,
size_t *output_length) {
if (decoding_table == NULL) build_decoding_table();
if (input_length % 4 != 0) return NULL;
*output_length = input_length / 4 * 3;
if (data[input_length - 1] == '=') (*output_length)--;
if (data[input_length - 2] == '=') (*output_length)--;
unsigned char *decoded_data = malloc(*output_length);
if (decoded_data == NULL) return NULL;
for (int i = 0, j = 0; i < input_length;) {
uint32_t sextet_a = data[i] == '=' ? 0 & i++ : decoding_table[data[i++]];
uint32_t sextet_b = data[i] == '=' ? 0 & i++ : decoding_table[data[i++]];
uint32_t sextet_c = data[i] == '=' ? 0 & i++ : decoding_table[data[i++]];
uint32_t sextet_d = data[i] == '=' ? 0 & i++ : decoding_table[data[i++]];
uint32_t triple = (sextet_a << 3 * 6)
+ (sextet_b << 2 * 6)
+ (sextet_c << 1 * 6)
+ (sextet_d << 0 * 6);
if (j < *output_length) decoded_data[j++] = (triple >> 2 * 8) & 0xFF;
if (j < *output_length) decoded_data[j++] = (triple >> 1 * 8) & 0xFF;
if (j < *output_length) decoded_data[j++] = (triple >> 0 * 8) & 0xFF;
}
return decoded_data;
}
void build_decoding_table() {
decoding_table = malloc(256);
for (int i = 0; i < 64; i++)
decoding_table[(unsigned char) encoding_table[i]] = i;
}
void base64_cleanup() {
free(decoding_table);
}
Gardez à l'esprit que cela ne vérifie pas les erreurs lors du décodage - les données non codées en base 64 seront traitées.
*output_length = ((input_length - 1) / 3) * 4 + 4;
au début de base64_encode.
build_decoding_table
. encoding_table[64]
pour encoding_table[255]
n'existent pas.
Je sais que cette question est assez ancienne, mais je devenais confus par la quantité de solutions proposées - chacune d'elles prétendant être plus rapide et meilleure. J'ai monté un projet sur github pour comparer les encodeurs et décodeurs base64: https://github.com/gaspardpetit/base64/
À ce stade, je ne me suis pas limité aux algorithmes C - si une implémentation fonctionne bien en C ++, elle peut facilement être rétroportée vers C. Des tests ont également été effectués à l'aide de Visual Studio 2015. Si quelqu'un veut mettre à jour cette réponse avec les résultats de clang / gcc, soyez mon invité.
ENCODEUR LES PLUS RAPIDES: Les deux implémentations d'encodeurs les plus rapides que j'ai trouvées étaient celles de Jouni Malinen sur http://web.mit.edu/freebsd/head/contrib/wpa/src/utils/base64.c et l'Apache sur https://opensource.apple .com / source / QuickTimeStreamingServer / QuickTimeStreamingServer-452 / CommonUtilitiesLib / base64.c .
Voici le temps (en microsecondes) pour encoder 32K de données en utilisant les différents algorithmes que j'ai testés jusqu'à présent:
jounimalinen 25.1544
apache 25.5309
NibbleAndAHalf 38.4165
internetsoftwareconsortium 48.2879
polfosol 48.7955
wikibooks_org_c 51.9659
gnome 74.8188
elegantdice 118.899
libb64 120.601
manuelmartinez 120.801
arduino 126.262
daedalusalpha 126.473
CppCodec 151.866
wikibooks_org_cpp 343.2
adp_gmbh 381.523
LihO 406.693
libcurl 3246.39
user152949 4828.21
(La solution de René Nyffenegger, créditée dans une autre réponse à cette question, est répertoriée ici sous le nom adp_gmbh).
Voici celui de Jouni Malinen que j'ai légèrement modifié pour renvoyer un std :: string:
/*
* Base64 encoding/decoding (RFC1341)
* Copyright (c) 2005-2011, Jouni Malinen <j@w1.fi>
*
* This software may be distributed under the terms of the BSD license.
* See README for more details.
*/
// 2016-12-12 - Gaspard Petit : Slightly modified to return a std::string
// instead of a buffer allocated with malloc.
#include <string>
static const unsigned char base64_table[65] =
"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
/**
* base64_encode - Base64 encode
* @src: Data to be encoded
* @len: Length of the data to be encoded
* @out_len: Pointer to output length variable, or %NULL if not used
* Returns: Allocated buffer of out_len bytes of encoded data,
* or empty string on failure
*/
std::string base64_encode(const unsigned char *src, size_t len)
{
unsigned char *out, *pos;
const unsigned char *end, *in;
size_t olen;
olen = 4*((len + 2) / 3); /* 3-byte blocks to 4-byte */
if (olen < len)
return std::string(); /* integer overflow */
std::string outStr;
outStr.resize(olen);
out = (unsigned char*)&outStr[0];
end = src + len;
in = src;
pos = out;
while (end - in >= 3) {
*pos++ = base64_table[in[0] >> 2];
*pos++ = base64_table[((in[0] & 0x03) << 4) | (in[1] >> 4)];
*pos++ = base64_table[((in[1] & 0x0f) << 2) | (in[2] >> 6)];
*pos++ = base64_table[in[2] & 0x3f];
in += 3;
}
if (end - in) {
*pos++ = base64_table[in[0] >> 2];
if (end - in == 1) {
*pos++ = base64_table[(in[0] & 0x03) << 4];
*pos++ = '=';
}
else {
*pos++ = base64_table[((in[0] & 0x03) << 4) |
(in[1] >> 4)];
*pos++ = base64_table[(in[1] & 0x0f) << 2];
}
*pos++ = '=';
}
return outStr;
}
DÉCODEUR LES PLUS RAPIDES: Voici les résultats du décodage et je dois avouer que je suis un peu surpris:
polfosol 45.2335
wikibooks_org_c 74.7347
apache 77.1438
libb64 100.332
gnome 114.511
manuelmartinez 126.579
elegantdice 138.514
daedalusalpha 151.561
jounimalinen 206.163
arduino 335.95
wikibooks_org_cpp 350.437
CppCodec 526.187
internetsoftwareconsortium 862.833
libcurl 1280.27
LihO 1852.4
adp_gmbh 1934.43
user152949 5332.87
L'extrait de Polfosol de l'extrait de code de décodage base64 en c ++ est le plus rapide d'un facteur presque 2x.
Voici le code par souci d'exhaustivité:
static const int B64index[256] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 62, 63, 62, 62, 63, 52, 53, 54, 55,
56, 57, 58, 59, 60, 61, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6,
7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 0,
0, 0, 0, 63, 0, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40,
41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51 };
std::string b64decode(const void* data, const size_t len)
{
unsigned char* p = (unsigned char*)data;
int pad = len > 0 && (len % 4 || p[len - 1] == '=');
const size_t L = ((len + 3) / 4 - pad) * 4;
std::string str(L / 4 * 3 + pad, '\0');
for (size_t i = 0, j = 0; i < L; i += 4)
{
int n = B64index[p[i]] << 18 | B64index[p[i + 1]] << 12 | B64index[p[i + 2]] << 6 | B64index[p[i + 3]];
str[j++] = n >> 16;
str[j++] = n >> 8 & 0xFF;
str[j++] = n & 0xFF;
}
if (pad)
{
int n = B64index[p[L]] << 18 | B64index[p[L + 1]] << 12;
str[str.size() - 1] = n >> 16;
if (len > L + 2 && p[L + 2] != '=')
{
n |= B64index[p[L + 2]] << 6;
str.push_back(n >> 8 & 0xFF);
}
}
return str;
}
char* outStr
paramètre et écrivez dans ce tampon au lieu de renvoyer un std::string
si vous le souhaitez, c'est trivial à faire. Avant de publier ceci, il y avait déjà deux réponses C ++ avec des votes positifs ici.
Mais vous pouvez aussi le faire dans openssl (la openssl enc
commande le fait ....), regardez la BIO_f_base64()
fonction
Voici ma solution utilisant OpenSSL.
/* A BASE-64 ENCODER AND DECODER USING OPENSSL */
#include <openssl/pem.h>
#include <string.h> //Only needed for strlen().
char *base64encode (const void *b64_encode_this, int encode_this_many_bytes){
BIO *b64_bio, *mem_bio; //Declares two OpenSSL BIOs: a base64 filter and a memory BIO.
BUF_MEM *mem_bio_mem_ptr; //Pointer to a "memory BIO" structure holding our base64 data.
b64_bio = BIO_new(BIO_f_base64()); //Initialize our base64 filter BIO.
mem_bio = BIO_new(BIO_s_mem()); //Initialize our memory sink BIO.
BIO_push(b64_bio, mem_bio); //Link the BIOs by creating a filter-sink BIO chain.
BIO_set_flags(b64_bio, BIO_FLAGS_BASE64_NO_NL); //No newlines every 64 characters or less.
BIO_write(b64_bio, b64_encode_this, encode_this_many_bytes); //Records base64 encoded data.
BIO_flush(b64_bio); //Flush data. Necessary for b64 encoding, because of pad characters.
BIO_get_mem_ptr(mem_bio, &mem_bio_mem_ptr); //Store address of mem_bio's memory structure.
BIO_set_close(mem_bio, BIO_NOCLOSE); //Permit access to mem_ptr after BIOs are destroyed.
BIO_free_all(b64_bio); //Destroys all BIOs in chain, starting with b64 (i.e. the 1st one).
BUF_MEM_grow(mem_bio_mem_ptr, (*mem_bio_mem_ptr).length + 1); //Makes space for end null.
(*mem_bio_mem_ptr).data[(*mem_bio_mem_ptr).length] = '\0'; //Adds null-terminator to tail.
return (*mem_bio_mem_ptr).data; //Returns base-64 encoded data. (See: "buf_mem_st" struct).
}
char *base64decode (const void *b64_decode_this, int decode_this_many_bytes){
BIO *b64_bio, *mem_bio; //Declares two OpenSSL BIOs: a base64 filter and a memory BIO.
char *base64_decoded = calloc( (decode_this_many_bytes*3)/4+1, sizeof(char) ); //+1 = null.
b64_bio = BIO_new(BIO_f_base64()); //Initialize our base64 filter BIO.
mem_bio = BIO_new(BIO_s_mem()); //Initialize our memory source BIO.
BIO_write(mem_bio, b64_decode_this, decode_this_many_bytes); //Base64 data saved in source.
BIO_push(b64_bio, mem_bio); //Link the BIOs by creating a filter-source BIO chain.
BIO_set_flags(b64_bio, BIO_FLAGS_BASE64_NO_NL); //Don't require trailing newlines.
int decoded_byte_index = 0; //Index where the next base64_decoded byte should be written.
while ( 0 < BIO_read(b64_bio, base64_decoded+decoded_byte_index, 1) ){ //Read byte-by-byte.
decoded_byte_index++; //Increment the index until read of BIO decoded data is complete.
} //Once we're done reading decoded data, BIO_read returns -1 even though there's no error.
BIO_free_all(b64_bio); //Destroys all BIOs in chain, starting with b64 (i.e. the 1st one).
return base64_decoded; //Returns base-64 decoded data with trailing null terminator.
}
/*Here's one way to base64 encode/decode using the base64encode() and base64decode functions.*/
int main(void){
char data_to_encode[] = "Base64 encode this string!"; //The string we will base-64 encode.
int bytes_to_encode = strlen(data_to_encode); //Number of bytes in string to base64 encode.
char *base64_encoded = base64encode(data_to_encode, bytes_to_encode); //Base-64 encoding.
int bytes_to_decode = strlen(base64_encoded); //Number of bytes in string to base64 decode.
char *base64_decoded = base64decode(base64_encoded, bytes_to_decode); //Base-64 decoding.
printf("Original character string is: %s\n", data_to_encode); //Prints our initial string.
printf("Base-64 encoded string is: %s\n", base64_encoded); //Prints base64 encoded string.
printf("Base-64 decoded string is: %s\n", base64_decoded); //Prints base64 decoded string.
free(base64_encoded); //Frees up the memory holding our base64 encoded data.
free(base64_decoded); //Frees up the memory holding our base64 decoded data.
}
cc -o base base.c -lssl -lcrypto
. Aucune erreur. Il a produit cette sortie: Original character string is: Base64 encode this string! Base-64 encoded string is: QmFzZTY0IGVuY29kZSB0aGlzIHN0cmluZyE= Base-64 decoded string is: Base64 encode this string!
glib a des fonctions pour l'encodage base64: https://developer.gnome.org/glib/stable/glib-Base64-Encoding.html
libb64 a à la fois des API C et C ++. Il est léger et peut-être l'implémentation publique la plus rapide. C'est aussi une bibliothèque d'encodage base64 autonome dédiée, ce qui peut être utile si vous n'avez pas besoin de tous les autres éléments provenant de l'utilisation d'une bibliothèque plus grande telle que OpenSSL ou glib.
#define BUFFERSIZE 16777216
vous pouvez remplacer par 65536 si vous avez besoin d'un tampon plus petit.
char
est signé sur le système cible ... C'est un problème car il base64_decode_value
pourrait renvoyer un nombre négatif qui est ensuite converti en char.
GNU coreutils l' a dans lib / base64. C'est un peu gonflé mais traite de trucs comme EBCDIC. Vous pouvez également jouer seul, par exemple
char base64_digit (n) unsigned n; {
if (n < 10) return n - '0';
else if (n < 10 + 26) return n - 'a';
else if (n < 10 + 26 + 26) return n - 'A';
else assert(0);
return 0;
}
unsigned char base64_decode_digit(char c) {
switch (c) {
case '=' : return 62;
case '.' : return 63;
default :
if (isdigit(c)) return c - '0';
else if (islower(c)) return c - 'a' + 10;
else if (isupper(c)) return c - 'A' + 10 + 26;
else assert(0);
}
return 0xff;
}
unsigned base64_decode(char *s) {
char *p;
unsigned n = 0;
for (p = s; *p; p++)
n = 64 * n + base64_decode_digit(*p);
return n;
}
Sachez toutes les personnes par ces cadeaux que vous ne devez pas confondre «jouer seul» avec «mettre en œuvre une norme». Yeesh.
'+'
est 62 et '/'
est 63 dans PEM base64 comme demandé par OP. Voici une liste de variantes d'encodage base64 . Je ne vois pas de variante d'encodage base64 avec l'ordre des caractères que vous utilisez. Mais le calcul derrière l'algorithme est correct.
J'avais besoin d'une implémentation C ++ fonctionnant sur std :: string . Aucune des réponses ne répondait à mes besoins, j'avais besoin d'une solution simple à deux fonctions pour l'encodage et le décodage, mais j'étais trop paresseux pour écrire mon propre code, alors j'ai trouvé ceci:
http://www.adp-gmbh.ch/cpp/common/base64.html
Les crédits pour le code vont à René Nyffenegger.
Mettre le code ci-dessous en cas de panne du site:
base64.cpp
/*
base64.cpp and base64.h
Copyright (C) 2004-2008 René Nyffenegger
This source code is provided 'as-is', without any express or implied
warranty. In no event will the author be held liable for any damages
arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:
1. The origin of this source code must not be misrepresented; you must not
claim that you wrote the original source code. If you use this source code
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original source code.
3. This notice may not be removed or altered from any source distribution.
René Nyffenegger rene.nyffenegger@adp-gmbh.ch
*/
#include "base64.h"
#include <iostream>
static const std::string base64_chars =
"ABCDEFGHIJKLMNOPQRSTUVWXYZ"
"abcdefghijklmnopqrstuvwxyz"
"0123456789+/";
static inline bool is_base64(unsigned char c) {
return (isalnum(c) || (c == '+') || (c == '/'));
}
std::string base64_encode(unsigned char const* bytes_to_encode, unsigned int in_len) {
std::string ret;
int i = 0;
int j = 0;
unsigned char char_array_3[3];
unsigned char char_array_4[4];
while (in_len--) {
char_array_3[i++] = *(bytes_to_encode++);
if (i == 3) {
char_array_4[0] = (char_array_3[0] & 0xfc) >> 2;
char_array_4[1] = ((char_array_3[0] & 0x03) << 4) + ((char_array_3[1] & 0xf0) >> 4);
char_array_4[2] = ((char_array_3[1] & 0x0f) << 2) + ((char_array_3[2] & 0xc0) >> 6);
char_array_4[3] = char_array_3[2] & 0x3f;
for(i = 0; (i <4) ; i++)
ret += base64_chars[char_array_4[i]];
i = 0;
}
}
if (i)
{
for(j = i; j < 3; j++)
char_array_3[j] = '\0';
char_array_4[0] = (char_array_3[0] & 0xfc) >> 2;
char_array_4[1] = ((char_array_3[0] & 0x03) << 4) + ((char_array_3[1] & 0xf0) >> 4);
char_array_4[2] = ((char_array_3[1] & 0x0f) << 2) + ((char_array_3[2] & 0xc0) >> 6);
char_array_4[3] = char_array_3[2] & 0x3f;
for (j = 0; (j < i + 1); j++)
ret += base64_chars[char_array_4[j]];
while((i++ < 3))
ret += '=';
}
return ret;
}
std::string base64_decode(std::string const& encoded_string) {
int in_len = encoded_string.size();
int i = 0;
int j = 0;
int in_ = 0;
unsigned char char_array_4[4], char_array_3[3];
std::string ret;
while (in_len-- && ( encoded_string[in_] != '=') && is_base64(encoded_string[in_])) {
char_array_4[i++] = encoded_string[in_]; in_++;
if (i ==4) {
for (i = 0; i <4; i++)
char_array_4[i] = base64_chars.find(char_array_4[i]);
char_array_3[0] = (char_array_4[0] << 2) + ((char_array_4[1] & 0x30) >> 4);
char_array_3[1] = ((char_array_4[1] & 0xf) << 4) + ((char_array_4[2] & 0x3c) >> 2);
char_array_3[2] = ((char_array_4[2] & 0x3) << 6) + char_array_4[3];
for (i = 0; (i < 3); i++)
ret += char_array_3[i];
i = 0;
}
}
if (i) {
for (j = i; j <4; j++)
char_array_4[j] = 0;
for (j = 0; j <4; j++)
char_array_4[j] = base64_chars.find(char_array_4[j]);
char_array_3[0] = (char_array_4[0] << 2) + ((char_array_4[1] & 0x30) >> 4);
char_array_3[1] = ((char_array_4[1] & 0xf) << 4) + ((char_array_4[2] & 0x3c) >> 2);
char_array_3[2] = ((char_array_4[2] & 0x3) << 6) + char_array_4[3];
for (j = 0; (j < i - 1); j++) ret += char_array_3[j];
}
return ret;
}
base64.h
#include <string>
std::string base64_encode(unsigned char const* , unsigned int len);
std::string base64_decode(std::string const& s);
Usage
const std::string s = "test";
std::string encoded = base64_encode(reinterpret_cast<const unsigned char*>(s.c_str()), s.length());
std::string decoded = base64_decode(encoded);
Voici le décodeur que j'utilise depuis des années ...
static const char table[] = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
static const int BASE64_INPUT_SIZE = 57;
BOOL isbase64(char c)
{
return c && strchr(table, c) != NULL;
}
inline char value(char c)
{
const char *p = strchr(table, c);
if(p) {
return p-table;
} else {
return 0;
}
}
int UnBase64(unsigned char *dest, const unsigned char *src, int srclen)
{
*dest = 0;
if(*src == 0)
{
return 0;
}
unsigned char *p = dest;
do
{
char a = value(src[0]);
char b = value(src[1]);
char c = value(src[2]);
char d = value(src[3]);
*p++ = (a << 2) | (b >> 4);
*p++ = (b << 4) | (c >> 2);
*p++ = (c << 6) | d;
if(!isbase64(src[1]))
{
p -= 2;
break;
}
else if(!isbase64(src[2]))
{
p -= 2;
break;
}
else if(!isbase64(src[3]))
{
p--;
break;
}
src += 4;
while(*src && (*src == 13 || *src == 10)) src++;
}
while(srclen-= 4);
*p = 0;
return p-dest;
}
UnBase64
fonction peut compromettre la mémoire après le tampon dest, si ce tampon a la taille exacte requise pour décoder la chaîne encodée en base 64. Prenons par exemple le cas simple où vous essayez de décoder la chaîne suivante encodée en base 64 "BQ ==", en un seul BYTE c'est-à-dire que unsigned char Result = 0; UnBase64(&Result, "BQ==", 4);
cela corrompra la pile!
Au cas où les gens auraient besoin d'une solution C ++, je mets cette solution OpenSSL ensemble (à la fois pour l'encodage et le décodage). Vous devrez créer un lien avec la bibliothèque "crypto" (qui est OpenSSL). Cela a été vérifié pour les fuites avec valgrind (bien que vous puissiez ajouter un code de vérification d'erreur supplémentaire pour le rendre un peu meilleur - je sais au moins que la fonction d'écriture devrait vérifier la valeur de retour).
#include <openssl/bio.h>
#include <openssl/evp.h>
#include <stdlib.h>
string base64_encode( const string &str ){
BIO *base64_filter = BIO_new( BIO_f_base64() );
BIO_set_flags( base64_filter, BIO_FLAGS_BASE64_NO_NL );
BIO *bio = BIO_new( BIO_s_mem() );
BIO_set_flags( bio, BIO_FLAGS_BASE64_NO_NL );
bio = BIO_push( base64_filter, bio );
BIO_write( bio, str.c_str(), str.length() );
BIO_flush( bio );
char *new_data;
long bytes_written = BIO_get_mem_data( bio, &new_data );
string result( new_data, bytes_written );
BIO_free_all( bio );
return result;
}
string base64_decode( const string &str ){
BIO *bio, *base64_filter, *bio_out;
char inbuf[512];
int inlen;
base64_filter = BIO_new( BIO_f_base64() );
BIO_set_flags( base64_filter, BIO_FLAGS_BASE64_NO_NL );
bio = BIO_new_mem_buf( (void*)str.c_str(), str.length() );
bio = BIO_push( base64_filter, bio );
bio_out = BIO_new( BIO_s_mem() );
while( (inlen = BIO_read(bio, inbuf, 512)) > 0 ){
BIO_write( bio_out, inbuf, inlen );
}
BIO_flush( bio_out );
char *new_data;
long bytes_written = BIO_get_mem_data( bio_out, &new_data );
string result( new_data, bytes_written );
BIO_free_all( bio );
BIO_free_all( bio_out );
return result;
}
J'en ai écrit un pour une utilisation avec C ++, il est très rapide, fonctionne avec des flux, gratuit et open source:
https://tmplusplus.svn.sourceforge.net/svnroot/tmplusplus/trunk/src/
N'hésitez pas à l'utiliser si cela correspond à votre objectif.
Edit: Ajout de code en ligne sur demande.
L'amélioration des performances est obtenue en utilisant une table de recherche pour l'encodage et le décodage. _UINT8
est un unsigned char
sur la plupart des systèmes d'exploitation.
/** Static Base64 character encoding lookup table */
const char CBase64::encodeCharacterTable[65] = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
/** Static Base64 character decoding lookup table */
const char CBase64::decodeCharacterTable[256] = {
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1
,-1,62,-1,-1,-1,63,52,53,54,55,56,57,58,59,60,61,-1,-1,-1,-1,-1,-1,-1,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21
,22,23,24,25,-1,-1,-1,-1,-1,-1,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1
,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1};
/*!
\brief Encodes binary data to base 64 character data
\param in The data to encode
\param out The encoded data as characters
*/
void CBase64::Encode(std::istream &in, std::ostringstream &out)
{
char buff1[3];
char buff2[4];
_UINT8 i=0, j;
while(in.readsome(&buff1[i++], 1))
if (i==3)
{
out << encodeCharacterTable[(buff1[0] & 0xfc) >> 2];
out << encodeCharacterTable[((buff1[0] & 0x03) << 4) + ((buff1[1] & 0xf0) >> 4)];
out << encodeCharacterTable[((buff1[1] & 0x0f) << 2) + ((buff1[2] & 0xc0) >> 6)];
out << encodeCharacterTable[buff1[2] & 0x3f];
i=0;
}
if (--i)
{
for(j=i;j<3;j++) buff1[j] = '\0';
buff2[0] = (buff1[0] & 0xfc) >> 2;
buff2[1] = ((buff1[0] & 0x03) << 4) + ((buff1[1] & 0xf0) >> 4);
buff2[2] = ((buff1[1] & 0x0f) << 2) + ((buff1[2] & 0xc0) >> 6);
buff2[3] = buff1[2] & 0x3f;
for (j=0;j<(i+1);j++) out << encodeCharacterTable[buff2[j]];
while(i++<3) out << '=';
}
}
/*!
\brief Decodes base 64 character data to binary data
\param in The character data to decode
\param out The decoded data
*/
void CBase64::Decode(std::istringstream &in, std::ostream &out)
{
char buff1[4];
char buff2[4];
_UINT8 i=0, j;
while(in.readsome(&buff2[i], 1) && buff2[i] != '=')
{
if (++i==4)
{
for (i=0;i!=4;i++)
buff2[i] = decodeCharacterTable[buff2[i]];
out << (char)((buff2[0] << 2) + ((buff2[1] & 0x30) >> 4));
out << (char)(((buff2[1] & 0xf) << 4) + ((buff2[2] & 0x3c) >> 2));
out << (char)(((buff2[2] & 0x3) << 6) + buff2[3]);
i=0;
}
}
if (i)
{
for (j=i;j<4;j++) buff2[j] = '\0';
for (j=0;j<4;j++) buff2[j] = decodeCharacterTable[buff2[j]];
buff1[0] = (buff2[0] << 2) + ((buff2[1] & 0x30) >> 4);
buff1[1] = ((buff2[1] & 0xf) << 4) + ((buff2[2] & 0x3c) >> 2);
buff1[2] = ((buff2[2] & 0x3) << 6) + buff2[3];
for (j=0;j<(i-1); j++) out << (char)buff1[j];
}
}
Une petite amélioration du code de ryyst (qui a obtenu le plus de votes) est de ne pas utiliser de table de décodage allouée dynamiquement mais plutôt de table précalculée statique const. Cela élimine l'utilisation du pointeur et l'initialisation de la table, et évite également les fuites de mémoire si l'on oublie de nettoyer la table de décodage avec base64_cleanup () (d'ailleurs, dans base64_cleanup (), après avoir appelé free (decoding_table), on devrait avoir decoding_table = NULL, sinon appeler accidentellement base64_decode après base64_cleanup () plantera ou provoquera un comportement indéterminé). Une autre solution pourrait être d'utiliser std :: unique_ptr ... mais je suis satisfait d'avoir simplement const char [256] sur la pile et d'éviter d'utiliser des pointeurs tous ensemble - le code semble plus propre et plus court de cette façon.
La table de décodage est calculée comme suit:
const char encoding_table[] = {
'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H',
'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P',
'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X',
'Y', 'Z', 'a', 'b', 'c', 'd', 'e', 'f',
'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n',
'o', 'p', 'q', 'r', 's', 't', 'u', 'v',
'w', 'x', 'y', 'z', '0', '1', '2', '3',
'4', '5', '6', '7', '8', '9', '+', '/' };
unsigned char decoding_table[256];
for (int i = 0; i < 256; i++)
decoding_table[i] = '\0';
for (int i = 0; i < 64; i++)
decoding_table[(unsigned char)encoding_table[i]] = i;
for (int i = 0; i < 256; i++)
cout << "0x" << (int(decoding_table[i]) < 16 ? "0" : "") << hex << int(decoding_table[i]) << (i != 255 ? "," : "") << ((i+1) % 16 == 0 ? '\n' : '\0');
cin.ignore();
et le code modifié que j'utilise est:
static const char encoding_table[] = {
'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H',
'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P',
'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X',
'Y', 'Z', 'a', 'b', 'c', 'd', 'e', 'f',
'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n',
'o', 'p', 'q', 'r', 's', 't', 'u', 'v',
'w', 'x', 'y', 'z', '0', '1', '2', '3',
'4', '5', '6', '7', '8', '9', '+', '/' };
static const unsigned char decoding_table[256] = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x3e, 0x00, 0x00, 0x00, 0x3f,
0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e,
0x0f, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f, 0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27, 0x28,
0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f, 0x30, 0x31, 0x32, 0x33, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
char* base64_encode(const unsigned char *data, size_t input_length, size_t &output_length) {
const int mod_table[] = { 0, 2, 1 };
output_length = 4 * ((input_length + 2) / 3);
char *encoded_data = (char*)malloc(output_length);
if (encoded_data == nullptr)
return nullptr;
for (int i = 0, j = 0; i < input_length;) {
uint32_t octet_a = i < input_length ? (unsigned char)data[i++] : 0;
uint32_t octet_b = i < input_length ? (unsigned char)data[i++] : 0;
uint32_t octet_c = i < input_length ? (unsigned char)data[i++] : 0;
uint32_t triple = (octet_a << 0x10) + (octet_b << 0x08) + octet_c;
encoded_data[j++] = encoding_table[(triple >> 3 * 6) & 0x3F];
encoded_data[j++] = encoding_table[(triple >> 2 * 6) & 0x3F];
encoded_data[j++] = encoding_table[(triple >> 1 * 6) & 0x3F];
encoded_data[j++] = encoding_table[(triple >> 0 * 6) & 0x3F];
}
for (int i = 0; i < mod_table[input_length % 3]; i++)
encoded_data[output_length - 1 - i] = '=';
return encoded_data;
};
unsigned char* base64_decode(const char *data, size_t input_length, size_t &output_length) {
if (input_length % 4 != 0)
return nullptr;
output_length = input_length / 4 * 3;
if (data[input_length - 1] == '=') (output_length)--;
if (data[input_length - 2] == '=') (output_length)--;
unsigned char* decoded_data = (unsigned char*)malloc(output_length);
if (decoded_data == nullptr)
return nullptr;
for (int i = 0, j = 0; i < input_length;) {
uint32_t sextet_a = data[i] == '=' ? 0 & i++ : decoding_table[data[i++]];
uint32_t sextet_b = data[i] == '=' ? 0 & i++ : decoding_table[data[i++]];
uint32_t sextet_c = data[i] == '=' ? 0 & i++ : decoding_table[data[i++]];
uint32_t sextet_d = data[i] == '=' ? 0 & i++ : decoding_table[data[i++]];
uint32_t triple = (sextet_a << 3 * 6)
+ (sextet_b << 2 * 6)
+ (sextet_c << 1 * 6)
+ (sextet_d << 0 * 6);
if (j < output_length) decoded_data[j++] = (triple >> 2 * 8) & 0xFF;
if (j < output_length) decoded_data[j++] = (triple >> 1 * 8) & 0xFF;
if (j < output_length) decoded_data[j++] = (triple >> 0 * 8) & 0xFF;
}
return decoded_data;
};
Il s'agit d'un décodeur spécialement écrit pour éviter d'avoir besoin d'un tampon, en écrivant directement dans une fonction putchar. Ceci est basé sur l'implémentation de wikibook https://en.wikibooks.org/wiki/Algorithm_Implementation/Miscellaneous/Base64#C
Ce n'est pas aussi facile à utiliser que les autres options ci-dessus. Cependant, il peut être utile dans les systèmes embarqués, où vous souhaitez vider un fichier volumineux sans allouer un autre grand tampon pour stocker la chaîne datauri base64 résultante. (C'est dommage que datauri ne vous laisse pas spécifier le nom du fichier).
void datauriBase64EncodeBufferless(int (*putchar_fcptr)(int), const char* type_strptr, const void* data_buf, const size_t dataLength)
{
const char base64chars[] = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
const uint8_t *data = (const uint8_t *)data_buf;
size_t x = 0;
uint32_t n = 0;
int padCount = dataLength % 3;
uint8_t n0, n1, n2, n3;
size_t outcount = 0;
size_t line = 0;
putchar_fcptr((int)'d');
putchar_fcptr((int)'a');
putchar_fcptr((int)'t');
putchar_fcptr((int)'a');
putchar_fcptr((int)':');
outcount += 5;
while (*type_strptr != '\0')
{
putchar_fcptr((int)*type_strptr);
type_strptr++;
outcount++;
}
putchar_fcptr((int)';');
putchar_fcptr((int)'b');
putchar_fcptr((int)'a');
putchar_fcptr((int)'s');
putchar_fcptr((int)'e');
putchar_fcptr((int)'6');
putchar_fcptr((int)'4');
putchar_fcptr((int)',');
outcount += 8;
/* increment over the length of the string, three characters at a time */
for (x = 0; x < dataLength; x += 3)
{
/* these three 8-bit (ASCII) characters become one 24-bit number */
n = ((uint32_t)data[x]) << 16; //parenthesis needed, compiler depending on flags can do the shifting before conversion to uint32_t, resulting to 0
if((x+1) < dataLength)
n += ((uint32_t)data[x+1]) << 8;//parenthesis needed, compiler depending on flags can do the shifting before conversion to uint32_t, resulting to 0
if((x+2) < dataLength)
n += data[x+2];
/* this 24-bit number gets separated into four 6-bit numbers */
n0 = (uint8_t)(n >> 18) & 63;
n1 = (uint8_t)(n >> 12) & 63;
n2 = (uint8_t)(n >> 6) & 63;
n3 = (uint8_t)n & 63;
/*
* if we have one byte available, then its encoding is spread
* out over two characters
*/
putchar_fcptr((int)base64chars[n0]);
putchar_fcptr((int)base64chars[n1]);
outcount += 2;
/*
* if we have only two bytes available, then their encoding is
* spread out over three chars
*/
if((x+1) < dataLength)
{
putchar_fcptr((int)base64chars[n2]);
outcount += 1;
}
/*
* if we have all three bytes available, then their encoding is spread
* out over four characters
*/
if((x+2) < dataLength)
{
putchar_fcptr((int)base64chars[n3]);
outcount += 1;
}
/* Breaking up the line so it's easier to copy and paste */
int curr_line = (outcount/80);
if( curr_line != line )
{
line = curr_line;
putchar_fcptr((int)'\r');
putchar_fcptr((int)'\n');
}
}
/*
* create and add padding that is required if we did not have a multiple of 3
* number of characters available
*/
if (padCount > 0)
{
for (; padCount < 3; padCount++)
{
putchar_fcptr((int)'=');
}
}
putchar_fcptr((int)'\r');
putchar_fcptr((int)'\n');
}
Voici le test
#include <stdio.h>
#include <stdint.h>
#include <string.h>
int main(void)
{
char str[] = "test";
datauriBase64EncodeBufferless(putchar, "text/plain;charset=utf-8", str, strlen(str));
return 0;
}
Production attendue: data:text/plain;charset=utf-8;base64,dGVzdA==
Les fonctions EVP_EncodeBlock
et leEVP_DecodeBlock
rendent très simple:
#include <stdio.h>
#include <stdlib.h>
#include <openssl/evp.h>
char *base64(const unsigned char *input, int length) {
const int pl = 4*((length+2)/3);
char *output = calloc(pl+1, 1); //+1 for the terminating null that EVP_EncodeBlock adds on
const int ol = EVP_EncodeBlock(output, input, length);
if (ol != pl) { fprintf(stderr, "Whoops, encode predicted %d but we got %d\n", pl, ol); }
return output;
}
unsigned char *decode64(const char *input, int length) {
const int pl = 3*length/4;
unsigned char *output = calloc(pl+1, 1);
const int ol = EVP_DecodeBlock(output, input, length);
if (pl != ol) { fprintf(stderr, "Whoops, decode predicted %d but we got %d\n", pl, ol); }
return output;
}
Cette solution est basée sur la réponse schulwitz (encodage / décodage avec OpenSSL), mais c'est pour C ++ (enfin, la question originale concernait C, mais il y a déjà une autre réponse C ++ ici) et elle utilise la vérification des erreurs (donc c'est plus sûr à utiliser) :
#include <openssl/bio.h>
std::string base64_encode(const std::string &input)
{
BIO *p_bio_b64 = nullptr;
BIO *p_bio_mem = nullptr;
try
{
// make chain: p_bio_b64 <--> p_bio_mem
p_bio_b64 = BIO_new(BIO_f_base64());
if (!p_bio_b64) { throw std::runtime_error("BIO_new failed"); }
BIO_set_flags(p_bio_b64, BIO_FLAGS_BASE64_NO_NL); //No newlines every 64 characters or less
p_bio_mem = BIO_new(BIO_s_mem());
if (!p_bio_mem) { throw std::runtime_error("BIO_new failed"); }
BIO_push(p_bio_b64, p_bio_mem);
// write input to chain
// write sequence: input -->> p_bio_b64 -->> p_bio_mem
if (BIO_write(p_bio_b64, input.c_str(), input.size()) <= 0)
{ throw std::runtime_error("BIO_write failed"); }
if (BIO_flush(p_bio_b64) <= 0)
{ throw std::runtime_error("BIO_flush failed"); }
// get result
char *p_encoded_data = nullptr;
auto encoded_len = BIO_get_mem_data(p_bio_mem, &p_encoded_data);
if (!p_encoded_data) { throw std::runtime_error("BIO_get_mem_data failed"); }
std::string result(p_encoded_data, encoded_len);
// clean
BIO_free_all(p_bio_b64);
return result;
}
catch (...)
{
if (p_bio_b64) { BIO_free_all(p_bio_b64); }
throw;
}
}
std::string base64_decode(const std::string &input)
{
BIO *p_bio_mem = nullptr;
BIO *p_bio_b64 = nullptr;
try
{
// make chain: p_bio_b64 <--> p_bio_mem
p_bio_b64 = BIO_new(BIO_f_base64());
if (!p_bio_b64) { throw std::runtime_error("BIO_new failed"); }
BIO_set_flags(p_bio_b64, BIO_FLAGS_BASE64_NO_NL); //Don't require trailing newlines
p_bio_mem = BIO_new_mem_buf((void*)input.c_str(), input.length());
if (!p_bio_mem) { throw std::runtime_error("BIO_new failed"); }
BIO_push(p_bio_b64, p_bio_mem);
// read result from chain
// read sequence (reverse to write): buf <<-- p_bio_b64 <<-- p_bio_mem
std::vector<char> buf((input.size()*3/4)+1);
std::string result;
for (;;)
{
auto nread = BIO_read(p_bio_b64, buf.data(), buf.size());
if (nread < 0) { throw std::runtime_error("BIO_read failed"); }
if (nread == 0) { break; } // eof
result.append(buf.data(), nread);
}
// clean
BIO_free_all(p_bio_b64);
return result;
}
catch (...)
{
if (p_bio_b64) { BIO_free_all(p_bio_b64); }
throw;
}
}
Notez que base64_decode renvoie une chaîne vide, si l'entrée est une séquence base64 incorrecte (openssl fonctionne de cette manière).
Voici une version optimisée du codeur pour la réponse acceptée, qui prend également en charge les sauts de ligne pour MIME et d'autres protocoles (une optimisation similaire peut être appliquée au décodeur):
char *base64_encode(const unsigned char *data,
size_t input_length,
size_t *output_length,
bool addLineBreaks)
*output_length = 4 * ((input_length + 2) / 3);
if (addLineBreaks) *output_length += *output_length / 38; // CRLF after each 76 chars
char *encoded_data = malloc(*output_length);
if (encoded_data == NULL) return NULL;
UInt32 octet_a;
UInt32 octet_b;
UInt32 octet_c;
UInt32 triple;
int lineCount = 0;
int sizeMod = size - (size % 3); // check if there is a partial triplet
// adding all octet triplets, before partial last triplet
for (; offset < sizeMod; )
{
octet_a = data[offset++];
octet_b = data[offset++];
octet_c = data[offset++];
triple = (octet_a << 0x10) + (octet_b << 0x08) + octet_c;
encoded_data[mBufferPos++] = encoding_table[(triple >> 3 * 6) & 0x3F];
encoded_data[mBufferPos++] = encoding_table[(triple >> 2 * 6) & 0x3F];
encoded_data[mBufferPos++] = encoding_table[(triple >> 1 * 6) & 0x3F];
encoded_data[mBufferPos++] = encoding_table[(triple >> 0 * 6) & 0x3F];
if (addLineBreaks)
{
if (++lineCount == 19)
{
encoded_data[mBufferPos++] = 13;
encoded_data[mBufferPos++] = 10;
lineCount = 0;
}
}
}
// last bytes
if (sizeMod < size)
{
octet_a = data[offset++]; // first octect always added
octet_b = offset < size ? data[offset++] : (UInt32)0; // conditional 2nd octet
octet_c = (UInt32)0; // last character is definitely padded
triple = (octet_a << 0x10) + (octet_b << 0x08) + octet_c;
encoded_data[mBufferPos++] = encoding_table[(triple >> 3 * 6) & 0x3F];
encoded_data[mBufferPos++] = encoding_table[(triple >> 2 * 6) & 0x3F];
encoded_data[mBufferPos++] = encoding_table[(triple >> 1 * 6) & 0x3F];
encoded_data[mBufferPos++] = encoding_table[(triple >> 0 * 6) & 0x3F];
// add padding '='
sizeMod = size % 3;
// last character is definitely padded
encoded_data[mBufferPos - 1] = (byte)'=';
if (sizeMod == 1) encoded_data[mBufferPos - 2] = (byte)'=';
}
}