Comment imprimer un tableau numpy.array sans notation scientifique avec une précision donnée?

333

Je suis curieux de savoir s'il existe un moyen d'imprimer formaté numpy.arrays, par exemple d'une manière similaire à ceci:

x = 1.23456
print '%.3f' % x

Si je veux imprimer les numpy.arrayflottants, il imprime plusieurs décimales, souvent au format «scientifique», ce qui est assez difficile à lire même pour les tableaux de faible dimension. Cependant, il numpy.arraydoit apparemment être imprimé sous forme de chaîne, c'est-à-dire avec %s. Y a-t-il une solution à cela?

camillio
la source
cette discussion pourrait également intéresser ceux qui se retrouvent ici via la recherche google.
Foad

Réponses:

558

Vous pouvez utiliser set_printoptionspour définir la précision de la sortie:

import numpy as np
x=np.random.random(10)
print(x)
# [ 0.07837821  0.48002108  0.41274116  0.82993414  0.77610352  0.1023732
#   0.51303098  0.4617183   0.33487207  0.71162095]

np.set_printoptions(precision=3)
print(x)
# [ 0.078  0.48   0.413  0.83   0.776  0.102  0.513  0.462  0.335  0.712]

Et suppresssupprime l'utilisation de la notation scientifique pour les petits nombres:

y=np.array([1.5e-10,1.5,1500])
print(y)
# [  1.500e-10   1.500e+00   1.500e+03]
np.set_printoptions(suppress=True)
print(y)
# [    0.      1.5  1500. ]

Voir les documents pour set_printoptions pour d'autres options.


Pour appliquer les options d'impression localement , à l'aide de NumPy 1.15.0 ou version ultérieure, vous pouvez utiliser le gestionnaire de contexte numpy.printoptions . Par exemple, à l'intérieur de with-suite precision=3et suppress=Truesont définis:

x = np.random.random(10)
with np.printoptions(precision=3, suppress=True):
    print(x)
    # [ 0.073  0.461  0.689  0.754  0.624  0.901  0.049  0.582  0.557  0.348]

Mais en dehors des with-suiteoptions d'impression sont de retour aux paramètres par défaut:

print(x)    
# [ 0.07334334  0.46132615  0.68935231  0.75379645  0.62424021  0.90115836
#   0.04879837  0.58207504  0.55694118  0.34768638]

Si vous utilisez une version antérieure de NumPy, vous pouvez créer le gestionnaire de contexte vous-même. Par exemple,

import numpy as np
import contextlib

@contextlib.contextmanager
def printoptions(*args, **kwargs):
    original = np.get_printoptions()
    np.set_printoptions(*args, **kwargs)
    try:
        yield
    finally: 
        np.set_printoptions(**original)

x = np.random.random(10)
with printoptions(precision=3, suppress=True):
    print(x)
    # [ 0.073  0.461  0.689  0.754  0.624  0.901  0.049  0.582  0.557  0.348]

Pour éviter que les zéros ne soient retirés de l'extrémité des flotteurs:

np.set_printoptionspossède désormais un formatterparamètre qui vous permet de spécifier une fonction de formatage pour chaque type.

np.set_printoptions(formatter={'float': '{: 0.3f}'.format})
print(x)

qui imprime

[ 0.078  0.480  0.413  0.830  0.776  0.102  0.513  0.462  0.335  0.712]

au lieu de

[ 0.078  0.48   0.413  0.83   0.776  0.102  0.513  0.462  0.335  0.712]
unutbu
la source
Existe-t-il un moyen d'appliquer la mise en forme uniquement à l'instruction d'impression spécifique (par opposition à la définition d'un format de sortie général utilisé par toutes les instructions d'impression)?
bph
7
@Hiett: Il n'y a pas de fonction NumPy pour définir les options d'impression pour une seule print, mais vous pouvez utiliser un gestionnaire de contexte pour créer quelque chose de similaire. J'ai édité le post ci-dessus pour montrer ce que je veux dire.
unutbu
2
vous np.set_printoptions(precision=3)supprimez les zéros de fin .. comment les faire afficher comme ça [ 0.078 0.480 0.413 0.830 0.776 0.102 0.513 0.462 0.335 0.712]?
Norfeldt
2
@Norfeldt: J'ai ajouté un moyen de le faire ci-dessus.
unutbu
1
Cela fonctionne très bien. En remarque, vous pouvez également utiliser set_printoptionssi vous voulez une représentation sous forme de chaîne et pas nécessairement utiliser print. Vous pouvez simplement appeler __str__()l'instance du tableau numpy et vous obtiendrez la chaîne formatée selon les options d'impression que vous définissez.
Jayesh
41

Vous pouvez obtenir un sous-ensemble des np.set_printoptionsfonctionnalités de la np.array_strcommande, qui ne s'applique qu'à une seule instruction d'impression.

http://docs.scipy.org/doc/numpy/reference/generated/numpy.array_str.html

Par exemple:

In [27]: x = np.array([[1.1, 0.9, 1e-6]]*3)

In [28]: print x
[[  1.10000000e+00   9.00000000e-01   1.00000000e-06]
 [  1.10000000e+00   9.00000000e-01   1.00000000e-06]
 [  1.10000000e+00   9.00000000e-01   1.00000000e-06]]

In [29]: print np.array_str(x, precision=2)
[[  1.10e+00   9.00e-01   1.00e-06]
 [  1.10e+00   9.00e-01   1.00e-06]
 [  1.10e+00   9.00e-01   1.00e-06]]

In [30]: print np.array_str(x, precision=2, suppress_small=True)
[[ 1.1  0.9  0. ]
 [ 1.1  0.9  0. ]
 [ 1.1  0.9  0. ]]
Daniel Golden
la source
37

Unutbu a donné une réponse vraiment complète (ils ont aussi obtenu un +1 de moi), mais voici une alternative lo-tech:

>>> x=np.random.randn(5)
>>> x
array([ 0.25276524,  2.28334499, -1.88221637,  0.69949927,  1.0285625 ])
>>> ['{:.2f}'.format(i) for i in x]
['0.25', '2.28', '-1.88', '0.70', '1.03']

En tant que fonction (en utilisant la format()syntaxe de formatage):

def ndprint(a, format_string ='{0:.2f}'):
    print [format_string.format(v,i) for i,v in enumerate(a)]

Usage:

>>> ndprint(x)
['0.25', '2.28', '-1.88', '0.70', '1.03']

>>> ndprint(x, '{:10.4e}')
['2.5277e-01', '2.2833e+00', '-1.8822e+00', '6.9950e-01', '1.0286e+00']

>>> ndprint(x, '{:.8g}')
['0.25276524', '2.283345', '-1.8822164', '0.69949927', '1.0285625']

L'index du tableau est accessible dans la chaîne de format:

>>> ndprint(x, 'Element[{1:d}]={0:.2f}')
['Element[0]=0.25', 'Element[1]=2.28', 'Element[2]=-1.88', 'Element[3]=0.70', 'Element[4]=1.03']
Caleb Hattingh
la source
16

FYI Numpy 1.15 (date de sortie en attente) inclura un gestionnaire de contexte pour définir les options d'impression localement . Cela signifie que ce qui suit fonctionnera de la même manière que l'exemple correspondant dans la réponse acceptée (par unutbu et Neil G) sans avoir à écrire votre propre gestionnaire de contexte. Par exemple, en utilisant leur exemple:

x = np.random.random(10)
with np.printoptions(precision=3, suppress=True):
    print(x)
    # [ 0.073  0.461  0.689  0.754  0.624  0.901  0.049  0.582  0.557  0.348]
Justin Lanfranchi
la source
12

Le joyau qui rend trop facile l'obtention du résultat sous forme de chaîne (dans les versions numpy d'aujourd'hui) est caché dans la réponse denis: np.array2string

>>> import numpy as np
>>> x=np.random.random(10)
>>> np.array2string(x, formatter={'float_kind':'{0:.3f}'.format})
'[0.599 0.847 0.513 0.155 0.844 0.753 0.920 0.797 0.427 0.420]'
hamogu
la source
8

Des années plus tard, un autre est en dessous. Mais pour un usage quotidien, je

np.set_printoptions( threshold=20, edgeitems=10, linewidth=140,
    formatter = dict( float = lambda x: "%.3g" % x ))  # float arrays %.3g

''' printf( "... %.3g ... %.1f  ...", arg, arg ... ) for numpy arrays too

Example:
    printf( """ x: %.3g   A: %.1f   s: %s   B: %s """,
                   x,        A,        "str",  B )

If `x` and `A` are numbers, this is like `"format" % (x, A, "str", B)` in python.
If they're numpy arrays, each element is printed in its own format:
    `x`: e.g. [ 1.23 1.23e-6 ... ]  3 digits
    `A`: [ [ 1 digit after the decimal point ... ] ... ]
with the current `np.set_printoptions()`. For example, with
    np.set_printoptions( threshold=100, edgeitems=3, suppress=True )
only the edges of big `x` and `A` are printed.
`B` is printed as `str(B)`, for any `B` -- a number, a list, a numpy object ...

`printf()` tries to handle too few or too many arguments sensibly,
but this is iffy and subject to change.

How it works:
numpy has a function `np.array2string( A, "%.3g" )` (simplifying a bit).
`printf()` splits the format string, and for format / arg pairs
    format: % d e f g
    arg: try `np.asanyarray()`
-->  %s  np.array2string( arg, format )
Other formats and non-ndarray args are left alone, formatted as usual.

Notes:

`printf( ... end= file= )` are passed on to the python `print()` function.

Only formats `% [optional width . precision] d e f g` are implemented,
not `%(varname)format` .

%d truncates floats, e.g. 0.9 and -0.9 to 0; %.0f rounds, 0.9 to 1 .
%g is the same as %.6g, 6 digits.
%% is a single "%" character.

The function `sprintf()` returns a long string. For example,
    title = sprintf( "%s  m %g  n %g  X %.3g",
                    __file__, m, n, X )
    print( title )
    ...
    pl.title( title )

Module globals:
_fmt = "%.3g"  # default for extra args
_squeeze = np.squeeze  # (n,1) (1,n) -> (n,) print in 1 line not n

See also:
http://docs.scipy.org/doc/numpy/reference/generated/numpy.set_printoptions.html
http://docs.python.org/2.7/library/stdtypes.html#string-formatting

'''
# http://stackoverflow.com/questions/2891790/pretty-printing-of-numpy-array


#...............................................................................
from __future__ import division, print_function
import re
import numpy as np

__version__ = "2014-02-03 feb denis"

_splitformat = re.compile( r'''(
    %
    (?<! %% )  # not %%
    -? [ \d . ]*  # optional width.precision
    \w
    )''', re.X )
    # ... %3.0f  ... %g  ... %-10s ...
    # -> ['...' '%3.0f' '...' '%g' '...' '%-10s' '...']
    # odd len, first or last may be ""

_fmt = "%.3g"  # default for extra args
_squeeze = np.squeeze  # (n,1) (1,n) -> (n,) print in 1 line not n

#...............................................................................
def printf( format, *args, **kwargs ):
    print( sprintf( format, *args ), **kwargs )  # end= file=

printf.__doc__ = __doc__


def sprintf( format, *args ):
    """ sprintf( "text %.3g text %4.1f ... %s ... ", numpy arrays or ... )
        %[defg] array -> np.array2string( formatter= )
    """
    args = list(args)
    if not isinstance( format, basestring ):
        args = [format] + args
        format = ""

    tf = _splitformat.split( format )  # [ text %e text %f ... ]
    nfmt = len(tf) // 2
    nargs = len(args)
    if nargs < nfmt:
        args += (nfmt - nargs) * ["?arg?"]
    elif nargs > nfmt:
        tf += (nargs - nfmt) * [_fmt, " "]  # default _fmt

    for j, arg in enumerate( args ):
        fmt = tf[ 2*j + 1 ]
        if arg is None \
        or isinstance( arg, basestring ) \
        or (hasattr( arg, "__iter__" ) and len(arg) == 0):
            tf[ 2*j + 1 ] = "%s"  # %f -> %s, not error
            continue
        args[j], isarray = _tonumpyarray(arg)
        if isarray  and fmt[-1] in "defgEFG":
            tf[ 2*j + 1 ] = "%s"
            fmtfunc = (lambda x: fmt % x)
            formatter = dict( float_kind=fmtfunc, int=fmtfunc )
            args[j] = np.array2string( args[j], formatter=formatter )
    try:
        return "".join(tf) % tuple(args)
    except TypeError:  # shouldn't happen
        print( "error: tf %s  types %s" % (tf, map( type, args )))
        raise


def _tonumpyarray( a ):
    """ a, isarray = _tonumpyarray( a )
        ->  scalar, False
            np.asanyarray(a), float or int
            a, False
    """
    a = getattr( a, "value", a )  # cvxpy
    if np.isscalar(a):
        return a, False
    if hasattr( a, "__iter__" )  and len(a) == 0:
        return a, False
    try:
        # map .value ?
        a = np.asanyarray( a )
    except ValueError:
        return a, False
    if hasattr( a, "dtype" )  and a.dtype.kind in "fi":  # complex ?
        if callable( _squeeze ):
            a = _squeeze( a )  # np.squeeze
        return a, True
    else:
        return a, False


#...............................................................................
if __name__ == "__main__":
    import sys

    n = 5
    seed = 0
        # run this.py n= ...  in sh or ipython
    for arg in sys.argv[1:]:
        exec( arg )
    np.set_printoptions( 1, threshold=4, edgeitems=2, linewidth=80, suppress=True )
    np.random.seed(seed)

    A = np.random.exponential( size=(n,n) ) ** 10
    x = A[0]

    printf( "x: %.3g  \nA: %.1f  \ns: %s  \nB: %s ",
                x,         A,         "str",   A )
    printf( "x %%d: %d", x )
    printf( "x %%.0f: %.0f", x )
    printf( "x %%.1e: %.1e", x )
    printf( "x %%g: %g", x )
    printf( "x %%s uses np printoptions: %s", x )

    printf( "x with default _fmt: ", x )
    printf( "no args" )
    printf( "too few args: %g %g", x )
    printf( x )
    printf( x, x )
    printf( None )
    printf( "[]:", [] )
    printf( "[3]:", [3] )
    printf( np.array( [] ))
    printf( [[]] )  # squeeze
denis
la source
6

Et voici ce que j'utilise, et c'est assez simple:

print(np.vectorize("%.2f".__mod__)(sparse))
utdemir
la source
3

A été surpris de ne pas voir la aroundméthode mentionnée - signifie qu'il ne faut pas jouer avec les options d'impression.

import numpy as np

x = np.random.random([5,5])
print(np.around(x,decimals=3))

Output:
[[0.475 0.239 0.183 0.991 0.171]
 [0.231 0.188 0.235 0.335 0.049]
 [0.87  0.212 0.219 0.9   0.3  ]
 [0.628 0.791 0.409 0.5   0.319]
 [0.614 0.84  0.812 0.4   0.307]]
Miss Palmer
la source
2

Je souhaite souvent que différentes colonnes aient des formats différents. Voici comment j'imprime un tableau 2D simple en utilisant une variété de formatage en convertissant (des tranches de) mon tableau NumPy en un tuple:

import numpy as np
dat = np.random.random((10,11))*100  # Array of random values between 0 and 100
print(dat)                           # Lines get truncated and are hard to read
for i in range(10):
    print((4*"%6.2f"+7*"%9.4f") % tuple(dat[i,:]))
AstroFloyd
la source
1

numpy.char.modpeut également être utile, selon les détails de votre application, par exemple: numpy.char.mod('Value=%4.2f', numpy.arange(5, 10, 0.1))retournera un tableau de chaînes avec les éléments "Value = 5.00", "Value = 5.10" etc. (comme un exemple quelque peu artificiel).

jtniehof
la source
1

Les tableaux numpy ont la méthode round(precision)qui retourne un nouveau tableau numpy avec des éléments arrondis en conséquence.

import numpy as np

x = np.random.random([5,5])
print(x.round(3))
Ștefan
la source
1
Cela a fonctionné pour moi lors du passage du tableau à un ylabel matplotlib, merci
Hans
1

Je trouve que le format flottant habituel {: 9.5f} fonctionne correctement - en supprimant les notations électroniques de petite valeur - lors de l'affichage d'une liste ou d'un tableau à l'aide d'une boucle. Mais ce format échoue parfois à supprimer sa notation électronique lorsqu'un formateur a plusieurs éléments dans une seule instruction d'impression. Par exemple:

import numpy as np
np.set_printoptions(suppress=True)
a3 = 4E-3
a4 = 4E-4
a5 = 4E-5
a6 = 4E-6
a7 = 4E-7
a8 = 4E-8
#--first, display separate numbers-----------
print('Case 3:  a3, a4, a5:             {:9.5f}{:9.5f}{:9.5f}'.format(a3,a4,a5))
print('Case 4:  a3, a4, a5, a6:         {:9.5f}{:9.5f}{:9.5f}{:9.5}'.format(a3,a4,a5,a6))
print('Case 5:  a3, a4, a5, a6, a7:     {:9.5f}{:9.5f}{:9.5f}{:9.5}{:9.5f}'.format(a3,a4,a5,a6,a7))
print('Case 6:  a3, a4, a5, a6, a7, a8: {:9.5f}{:9.5f}{:9.5f}{:9.5f}{:9.5}{:9.5f}'.format(a3,a4,a5,a6,a7,a8))
#---second, display a list using a loop----------
myList = [a3,a4,a5,a6,a7,a8]
print('List 6:  a3, a4, a5, a6, a7, a8: ', end='')
for x in myList: 
    print('{:9.5f}'.format(x), end='')
print()
#---third, display a numpy array using a loop------------
myArray = np.array(myList)
print('Array 6: a3, a4, a5, a6, a7, a8: ', end='')
for x in myArray:
    print('{:9.5f}'.format(x), end='')
print()

Mes résultats montrent le bogue dans les cas 4, 5 et 6:

Case 3:  a3, a4, a5:               0.00400  0.00040  0.00004
Case 4:  a3, a4, a5, a6:           0.00400  0.00040  0.00004    4e-06
Case 5:  a3, a4, a5, a6, a7:       0.00400  0.00040  0.00004    4e-06  0.00000
Case 6:  a3, a4, a5, a6, a7, a8:   0.00400  0.00040  0.00004  0.00000    4e-07  0.00000
List 6:  a3, a4, a5, a6, a7, a8:   0.00400  0.00040  0.00004  0.00000  0.00000  0.00000
Array 6: a3, a4, a5, a6, a7, a8:   0.00400  0.00040  0.00004  0.00000  0.00000  0.00000

Je n'ai aucune explication à cela, et donc j'utilise toujours une boucle pour une sortie flottante de plusieurs valeurs.

Mike Lampton
la source
1

j'utilise

def np_print(array,fmt="10.5f"):
    print (array.size*("{:"+fmt+"}")).format(*array)

Il n'est pas difficile de le modifier pour les tableaux multidimensionnels.

albapa
la source
0

Encore une autre option consiste à utiliser le decimalmodule:

import numpy as np
from decimal import *

arr = np.array([  56.83,  385.3 ,    6.65,  126.63,   85.76,  192.72,  112.81, 10.55])
arr2 = [str(Decimal(i).quantize(Decimal('.01'))) for i in arr]

# ['56.83', '385.30', '6.65', '126.63', '85.76', '192.72', '112.81', '10.55']
jpp
la source