Convertir la pile de séries temporelles du raster GTiff en un seul NetCDF

12

Passer de la liste de diffusion gdal-dev:

Le lundi 2 septembre 2013 à 19 h 09, David Shean a écrit:

Hi list, j'essaie de regrouper une série temporelle de rasters GTiff avec une projection / étendue / résolution identique à un seul fichier NetCDF pour la distribution. J'ai passé la dernière heure à consulter le doc en ligne et à jouer avec gdal_translate, gdalbuildvrt et gdalwarp sans succès.

Existe-t-il un moyen simple de le faire en utilisant les utilitaires de ligne de commande gdal existants? J'ai pensé que je demanderais avant de recourir à une solution personnalisée à l'aide de l'API NetCDF Python.

Merci. -David

Le mar 3 septembre 2013 à 10 h 15, Etienne Tourigny a écrit:

ce que vous voulez est probablement hors de portée de gdal. Cela nécessiterait une gestion intelligente des métadonnées pour que gdal_translate les place dans un seul fichier ...

Je vous conseille de les convertir tous en netcdf en utilisant gdal_translate puis d'utiliser python-netcdf4 (pas celui de numpy / scipy) pour les empiler dans la dimension temporelle.

Le mardi 3 septembre 2013, à 7 h 55, "Signell, Richard" a écrit:

David, Si vous postez votre question sur le groupe stackexchange SIG /gis// je fournirai un exemple de code qui devrait être utile.

-Riches

====================

Mise à jour 9/3/13 17:04 PDT

Voici la sortie gdalinfo pour l'un de mes jeux de données d'entrée:


gdalinfo 20120901T2024_align_x+22.19_y+3.68_z+14.97_warp.tif

Driver: GTiff/GeoTIFF
Files: 20120901T2024_align_x+22.19_y+3.68_z+14.97_warp.tif
Size is 10666, 13387
Coordinate System is:
PROJCS["unnamed",
    GEOGCS["WGS 84",
        DATUM["WGS_1984",
            SPHEROID["WGS 84",6378137,298.257223563,
                AUTHORITY["EPSG","7030"]],
            AUTHORITY["EPSG","6326"]],
        PRIMEM["Greenwich",0],
        UNIT["degree",0.0174532925199433],
        AUTHORITY["EPSG","4326"]],
    PROJECTION["Polar_Stereographic"],
    PARAMETER["latitude_of_origin",70],
    PARAMETER["central_meridian",-45],
    PARAMETER["scale_factor",1],
    PARAMETER["false_easting",0],
    PARAMETER["false_northing",0],
    UNIT["metre",1,
        AUTHORITY["EPSG","9001"]]]
Origin = (-211346.063781524338992,-2245136.291794800199568)
Pixel Size = (5.000000000000000,-5.000000000000000)
Metadata:
  AREA_OR_POINT=Area
Image Structure Metadata:
  COMPRESSION=LZW
  INTERLEAVE=BAND
Corner Coordinates:
Upper Left  ( -211346.064,-2245136.292) ( 50d22'39.70"W, 69d23'55.59"N)
Lower Left  ( -211346.064,-2312071.292) ( 50d13'22.38"W, 68d48'10.75"N)
Upper Right ( -158016.064,-2245136.292) ( 49d 1'33.33"W, 69d26'16.42"N)
Lower Right ( -158016.064,-2312071.292) ( 48d54'35.06"W, 68d50'27.28"N)
Center      ( -184681.064,-2278603.792) ( 49d38' 1.32"W, 69d 7'17.04"N)
Band 1 Block=256x256 Type=Float32, ColorInterp=Gray
  NoData Value=-32767

Suivi de l'approche suggérée par Luke.

La génération vrt fonctionne bien:

gdalbuildvrt -separate newtest.vrt *warp.tif

<VRTDataset rasterXSize="10666" rasterYSize="13387">
  <SRS>PROJCS["unnamed",GEOGCS["WGS 84",DATUM["WGS_1984",SPHEROID["WGS 84",6378137,298.257223563,AUTHORITY["EPSG","7030"]],AUTHORITY["EPSG","6326"]],PRIMEM["Greenwich",0],UNIT["degree",0.0174532925199433],AUTHORITY["EPSG","4326"]],PROJECTION["Polar_Stereographic"],PARAMETER["latitude_of_origin",70],PARAMETER["central_meridian",-45],PARAMETER["scale_factor",1],PARAMETER["false_easting",0],PARAMETER["false_northing",0],UNIT["metre",1,AUTHORITY["EPSG","9001"]]]</SRS>
  <GeoTransform> -2.1134606378152434e+05,  5.0000000000000000e+00,  0.0000000000000000e+00, -2.2451362917948002e+06,  0.0000000000000000e+00, -5.0000000000000000e+00</GeoTransform>
  <VRTRasterBand dataType="Float32" band="1">
    <NoDataValue>-3.27670000000000E+04</NoDataValue>
    <ComplexSource>
      <SourceFilename relativeToVRT="1">20110619T2024_align_x+15.51_y+1.15_z+12.10_warp.tif</SourceFilename>
      <SourceBand>1</SourceBand>
      <SourceProperties RasterXSize="10666" RasterYSize="13387" DataType="Float32" BlockXSize="256" BlockYSize="256" />
      <SrcRect xOff="0" yOff="0" xSize="10666" ySize="13387" />
      <DstRect xOff="0" yOff="0" xSize="10666" ySize="13387" />
      <NODATA>-32767</NODATA>
    </ComplexSource>
  </VRTRasterBand>
  <VRTRasterBand dataType="Float32" band="2">
    <NoDataValue>-3.27670000000000E+04</NoDataValue>
    <ComplexSource>
      <SourceFilename relativeToVRT="1">20110802T2024_align_x+16.33_y+2.14_z+12.02_warp.tif</SourceFilename>
      <SourceBand>1</SourceBand>
      <SourceProperties RasterXSize="10666" RasterYSize="13387" DataType="Float32" BlockXSize="256" BlockYSize="256" />
      <SrcRect xOff="0" yOff="0" xSize="10666" ySize="13387" />
      <DstRect xOff="0" yOff="0" xSize="10666" ySize="13387" />
      <NODATA>-32767</NODATA>
    </ComplexSource>
  </VRTRasterBand>
...

Mais lorsque j'essaie de traduire en nc, j'obtiens l'erreur suivante:


gdal_translate -of netcdf newtest.vrt newtest.nc

Input file size is 10666, 13387
Warning 1: Variable has 0 dimension(s) - not supported.
0...10...20...30...40...50ERROR 1: netcdf error #-62 : NetCDF: One or more variable sizes violate format constraints .
at (netcdfdataset.cpp,SetDefineMode,1574)

ERROR 1: netcdf error #-39 : NetCDF: Operation not allowed in define mode .
at (netcdfdataset.cpp,IWriteBlock,1435)

ERROR 1: netCDF scanline write failed: NetCDF: Operation not allowed in define mode
ERROR 1: An error occured while writing a dirty block
...ERROR 1: netcdf error #-39 : NetCDF: Operation not allowed in define mode .
at (netcdfdataset.cpp,IWriteBlock,1435)

ERROR 1: netCDF scanline write failed: NetCDF: Operation not allowed in define mode
ERROR 1: netcdf error #-62 : NetCDF: One or more variable sizes violate format constraints .
at (netcdfdataset.cpp,~netCDFDataset,1548)

Donc, en y regardant de plus près, il semble que gdal ne soit pas satisfait de la projection stéréographique polaire que j'utilise (EPSG: 3413). Voir les lignes 1570-1582 de netcdfdataset.cpp:

https://code.vpac.org/gitorious/gdal-netcdf-testing/gdal-netcdf-driver/blobs/8fa3582669969ad4d55e461f5846b3ed33727f63/gdal/frmts/netcdf/netcdfdataset.cpp

Ma projection a une latitude_of_origin spécifiée mais aucun parallèle standard comme prévu par le pilote netcdf.

David Shean
la source
1
Quelle version de GDAL? Il y a eu un certain nombre de changements dans le pilote NetCDF dans GDAL> = 1.9.0. Cette page mentionne spécifiquement les modifications apportées à la gestion de la projection stéréographique polaire. Vous pouvez peut-être contourner ce problème en remplaçant la projection avec le paramètre gdal_translate -a_srs et en spécifiant une chaîne de projection valide mais équivalente. Voir aussi ( trac.osgeo.org/gdal/wiki/NetCDF_ProjectionTestingStatus )
user2856
gdalinfo --version GDAL 1.11dev, publié le 13/04/2013
David Shean le
1
Merci à Rich et Luke pour leur contribution utile. Je dois mettre à jour la dernière version de GDAL, évaluer la dernière fonctionnalité stéréographique polaire du pilote netcdf et suivre avec gdal-dev tout problème persistant. Bien que les deux réponses fonctionnent, j'aime la recette de Rich et l'adopterai à mes propres fins. Je sais que d'autres trouveront cette discussion utile - heureuse qu'elle soit archivée sur SE.
David Shean

Réponses:

22

Voici du code python qui fait ce que vous voulez, en lisant des fichiers GDAL qui représentent des données à des moments spécifiques et en écrivant dans un seul fichier NetCDF qui est compatible CF

#!/usr/bin/env python
'''
Convert a bunch of GDAL readable grids to a NetCDF Time Series.
Here we read a bunch of files that have names like:
/usgs/data0/prism/1890-1899/us_tmin_1895.01
/usgs/data0/prism/1890-1899/us_tmin_1895.02
...
/usgs/data0/prism/1890-1899/us_tmin_1895.12
'''

import numpy as np
import datetime as dt
import os
import gdal
import netCDF4
import re

ds = gdal.Open('/usgs/data0/prism/1890-1899/us_tmin_1895.01')
a = ds.ReadAsArray()
nlat,nlon = np.shape(a)

b = ds.GetGeoTransform() #bbox, interval
lon = np.arange(nlon)*b[1]+b[0]
lat = np.arange(nlat)*b[5]+b[3]


basedate = dt.datetime(1858,11,17,0,0,0)

# create NetCDF file
nco = netCDF4.Dataset('time_series.nc','w',clobber=True)

# chunking is optional, but can improve access a lot: 
# (see: http://www.unidata.ucar.edu/blogs/developer/entry/chunking_data_choosing_shapes)
chunk_lon=16
chunk_lat=16
chunk_time=12

# create dimensions, variables and attributes:
nco.createDimension('lon',nlon)
nco.createDimension('lat',nlat)
nco.createDimension('time',None)
timeo = nco.createVariable('time','f4',('time'))
timeo.units = 'days since 1858-11-17 00:00:00'
timeo.standard_name = 'time'

lono = nco.createVariable('lon','f4',('lon'))
lono.units = 'degrees_east'
lono.standard_name = 'longitude'

lato = nco.createVariable('lat','f4',('lat'))
lato.units = 'degrees_north'
lato.standard_name = 'latitude'

# create container variable for CRS: lon/lat WGS84 datum
crso = nco.createVariable('crs','i4')
csro.long_name = 'Lon/Lat Coords in WGS84'
crso.grid_mapping_name='latitude_longitude'
crso.longitude_of_prime_meridian = 0.0
crso.semi_major_axis = 6378137.0
crso.inverse_flattening = 298.257223563

# create short integer variable for temperature data, with chunking
tmno = nco.createVariable('tmn', 'i2',  ('time', 'lat', 'lon'), 
   zlib=True,chunksizes=[chunk_time,chunk_lat,chunk_lon],fill_value=-9999)
tmno.units = 'degC'
tmno.scale_factor = 0.01
tmno.add_offset = 0.00
tmno.long_name = 'minimum monthly temperature'
tmno.standard_name = 'air_temperature'
tmno.grid_mapping = 'crs'
tmno.set_auto_maskandscale(False)

nco.Conventions='CF-1.6'

#write lon,lat
lono[:]=lon
lato[:]=lat

pat = re.compile('us_tmin_[0-9]{4}\.[0-9]{2}')
itime=0

#step through data, writing time and data to NetCDF
for root, dirs, files in os.walk('/usgs/data0/prism/1890-1899/'):
    dirs.sort()
    files.sort()
    for f in files:
        if re.match(pat,f):
            # read the time values by parsing the filename
            year=int(f[8:12])
            mon=int(f[13:15])
            date=dt.datetime(year,mon,1,0,0,0)
            print(date)
            dtime=(date-basedate).total_seconds()/86400.
            timeo[itime]=dtime
           # min temp
            tmn_path = os.path.join(root,f)
            print(tmn_path)
            tmn=gdal.Open(tmn_path)
            a=tmn.ReadAsArray()  #data
            tmno[itime,:,:]=a
            itime=itime+1

nco.close()

GDAL et NetCDF4 Python peuvent être un peu pénibles à construire, mais la bonne nouvelle est qu'ils font partie de la plupart des distributions python scientifiques (Python (x, y), Enthought Python Distribution, Anaconda, ...)

Mise à jour: je n'ai pas encore fait de stéréographie polaire dans NetCDF compatible CF, mais je devrais ressembler à ceci. Ici , je suis supposé que central_meridianet latitude_of_origindans GDAL sont les mêmes que straight_vertical_longitude_from_poleet latitude_of_projection_origindans les FC:

#!/usr/bin/env python
'''
Convert a bunch of GDAL readable grids to a NetCDF Time Series.
Here we read a bunch of files that have names like:
/usgs/data0/prism/1890-1899/us_tmin_1895.01
/usgs/data0/prism/1890-1899/us_tmin_1895.02
...
/usgs/data0/prism/1890-1899/us_tmin_1895.12
'''

import numpy as np
import datetime as dt
import os
import gdal
import netCDF4
import re

ds = gdal.Open('/usgs/data0/prism/1890-1899/us_tmin_1895.01')
a = ds.ReadAsArray()
ny,nx = np.shape(a)

b = ds.GetGeoTransform() #bbox, interval
x = np.arange(nx)*b[1]+b[0]
y = np.arange(ny)*b[5]+b[3]


basedate = dt.datetime(1858,11,17,0,0,0)

# create NetCDF file
nco = netCDF4.Dataset('time_series.nc','w',clobber=True)

# chunking is optional, but can improve access a lot: 
# (see: http://www.unidata.ucar.edu/blogs/developer/entry/chunking_data_choosing_shapes)
chunk_x=16
chunk_y=16
chunk_time=12

# create dimensions, variables and attributes:
nco.createDimension('x',nx)
nco.createDimension('y',ny)
nco.createDimension('time',None)
timeo = nco.createVariable('time','f4',('time'))
timeo.units = 'days since 1858-11-17 00:00:00'
timeo.standard_name = 'time'

xo = nco.createVariable('x','f4',('x'))
xo.units = 'm'
xo.standard_name = 'projection_x_coordinate'

yo = nco.createVariable('y','f4',('y'))
yo.units = 'm'
yo.standard_name = 'projection_y_coordinate'

# create container variable for CRS: x/y WGS84 datum
crso = nco.createVariable('crs','i4')
crso.grid_mapping_name='polar_stereographic'
crso.straight_vertical_longitude_from_pole = -45.
crso.latitude_of_projection_origin = 70.
crso.scale_factor_at_projection_origin = 1.0
crso.false_easting = 0.0
crso.false_northing = 0.0
crso.semi_major_axis = 6378137.0
crso.inverse_flattening = 298.257223563

# create short integer variable for temperature data, with chunking
tmno = nco.createVariable('tmn', 'i2',  ('time', 'y', 'x'), 
   zlib=True,chunksizes=[chunk_time,chunk_y,chunk_x],fill_value=-9999)
tmno.units = 'degC'
tmno.scale_factor = 0.01
tmno.add_offset = 0.00
tmno.long_name = 'minimum monthly temperature'
tmno.standard_name = 'air_temperature'
tmno.grid_mapping = 'crs'
tmno.set_auto_maskandscale(False)

nco.Conventions='CF-1.6'

#write x,y
xo[:]=x
yo[:]=y

pat = re.compile('us_tmin_[0-9]{4}\.[0-9]{2}')
itime=0

#step through data, writing time and data to NetCDF
for root, dirs, files in os.walk('/usgs/data0/prism/1890-1899/'):
    dirs.sort()
    files.sort()
    for f in files:
        if re.match(pat,f):
            # read the time values by parsing the filename
            year=int(f[8:12])
            mon=int(f[13:15])
            date=dt.datetime(year,mon,1,0,0,0)
            print(date)
            dtime=(date-basedate).total_seconds()/86400.
            timeo[itime]=dtime
           # min temp
            tmn_path = os.path.join(root,f)
            print(tmn_path)
            tmn=gdal.Open(tmn_path)
            a=tmn.ReadAsArray()  #data
            tmno[itime,:,:]=a
            itime=itime+1

nco.close()
Rich Signell
la source
Grand code riche! Ceci est très utile et je l'utiliserai à l'avenir. Il semble que votre projection d'entrée soit supposée être géographique avec des unités de lat / lon (EPSG: 4326). Je travaille avec des données haute résolution aux latitudes polaires, donc ce n'est pas idéal, mais je vais essayer de convertir en WGS84.
David Shean
lat / lon n'était qu'un exemple. Vous pouvez utiliser ce que vous souhaitez. Quelle (s) application (s) ciblez-vous? ArcGIS, juste pour l'archivage ou quoi?
Rich Signell
Eh bien, j'ai de nombreuses séries temporelles comme celle-ci, et j'évalue des options pour un stockage et une analyse efficaces. Mais pour le moment, j'empaquette les données pour les intégrer aux modèles de flux. La communauté de modélisation, du moins la modélisation de l'écoulement glaciaire, semble aimer netcdf.
David Shean
Existe-t-il une URL où nous pourrions trouver un échantillon de ces données?
Rich Signell
Malheureusement, je ne peux pas distribuer à ce stade, mais il est prévu d'archiver à l'avenir.
David Shean
2

Il est facile de les mettre dans un seul NetCDF avec les utilitaires GDAL, exemple ci-dessous. Mais vous n'obtenez pas la dimension temporelle / autres métadonnées de la réponse de @ RichSignell. Les tiffs sont simplement déversés dans des sous-jeux de données.

C:\remotesensing\testdata>dir /b ndvi*.tif
ndvi1.tif
ndvi2.tif
ndvi3.tif

C:\remotesensing\testdata>gdalbuildvrt -separate ndvi.vrt ndvi*.tif
0...10...20...30...40...50...60...70...80...90...100 - done.

C:\remotesensing\testdata>gdal_translate -of netcdf ndvi.vrt ndvi.nc
Input file size is 96, 88
0...10...20...30...40...50...60...70...80...90...100 - done.

C:\remotesensing\testdata>gdalinfo ndvi.nc
Driver: netCDF/Network Common Data Format
Files: ndvi.nc
Size is 512, 512
Coordinate System is `'
Metadata:
  NC_GLOBAL#Conventions=CF-1.5
  NC_GLOBAL#GDAL=GDAL 1.10.0, released 2013/04/24
  NC_GLOBAL#history=Wed Sep 04 09:49:11 2013: GDAL CreateCopy( ndvi.nc, ... )
Subdatasets:
  SUBDATASET_1_NAME=NETCDF:"ndvi.nc":Band1
  SUBDATASET_1_DESC=[88x96] Band1 (32-bit floating-point)
  SUBDATASET_2_NAME=NETCDF:"ndvi.nc":Band2
  SUBDATASET_2_DESC=[88x96] Band2 (32-bit floating-point)
  SUBDATASET_3_NAME=NETCDF:"ndvi.nc":Band3
  SUBDATASET_3_DESC=[88x96] Band3 (32-bit floating-point)
Corner Coordinates:
Upper Left  (    0.0,    0.0)
Lower Left  (    0.0,  512.0)
Upper Right (  512.0,    0.0)
Lower Right (  512.0,  512.0)
Center      (  256.0,  256.0)

C:\remotesensing\testdata>gdalinfo NETCDF:"ndvi.nc":Band1
Driver: netCDF/Network Common Data Format
Files: ndvi.nc
Size is 96, 88
Coordinate System is:
GEOGCS["GCS_GDA_1994",
    DATUM["Geocentric_Datum_of_Australia_1994",
        SPHEROID["GRS 1980",6378137,298.2572221010002,
            AUTHORITY["EPSG","7019"]],
        AUTHORITY["EPSG","6283"]],
    PRIMEM["Greenwich",0],
    UNIT["degree",0.0174532925199433]]
Origin = (115.810500000000000,-32.260249999999999)
Pixel Size = (0.000250000000000,-0.000250000000000)
Metadata:
  Band1#_FillValue=0
  Band1#grid_mapping=crs
  Band1#long_name=GDAL Band Number 1
  crs#GeoTransform=115.8105 0.00025 0 -32.26025 0 -0.00025
  crs#grid_mapping_name=latitude_longitude
  crs#inverse_flattening=298.2572221010002
  crs#longitude_of_prime_meridian=0
  crs#semi_major_axis=6378137
  crs#spatial_ref=GEOGCS["GCS_GDA_1994",DATUM["Geocentric_Datum_of_Australia_1994",SPHEROID["GRS 1980",6378137,298.2572221010002,AUTHORITY["EPSG","7019"]],AUTHORITY["EPSG","6283"]],PRIMEM["Greenwich",0],UNIT["degree",0.0174532925199433]]
  lat#long_name=latitude
  lat#standard_name=latitude
  lat#units=degrees_north
  lon#long_name=longitude
  lon#standard_name=longitude
  lon#units=degrees_east
  NC_GLOBAL#Conventions=CF-1.5
  NC_GLOBAL#GDAL=GDAL 1.10.0, released 2013/04/24
  NC_GLOBAL#history=Wed Sep 04 09:49:11 2013: GDAL CreateCopy( ndvi.nc, ... )
Corner Coordinates:
Upper Left  ( 115.8105000, -32.2602500) (115d48'37.80"E, 32d15'36.90"S)
Lower Left  ( 115.8105000, -32.2822500) (115d48'37.80"E, 32d16'56.10"S)
Upper Right ( 115.8345000, -32.2602500) (115d50' 4.20"E, 32d15'36.90"S)
Lower Right ( 115.8345000, -32.2822500) (115d50' 4.20"E, 32d16'56.10"S)
Center      ( 115.8225000, -32.2712500) (115d49'21.00"E, 32d16'16.50"S)
Band 1 Block=96x1 Type=Float32, ColorInterp=Undefined
  NoData Value=0
  Metadata:
    _FillValue=0
    grid_mapping=crs
    long_name=GDAL Band Number 1
    NETCDF_VARNAME=Band1
user2856
la source
J'ai essayé cette approche et elle a échoué pour mes données d'entrée - je publierai la sortie ci-dessus.
David Shean
Comme test, j'ai utilisé gdalwarp pour reprojeter le vrt multibande EPSG: 3413 en EPSG: 4326, puis j'ai utilisé gdal_translate pour convertir en netcdf4. Comme le suggère Luke, cela fonctionne sans problème. Comme Etienne l'a suggéré dans le fil d'origine gdal-dev, il y a un contrôle limité sur les métadonnées pour cette approche.
David Shean