J'ai deux rasters de résolution et d'étendue différentes:
> res(Elevation)
[1] 0.002083333 0.002083333
> res(Ann_precip)
[1] 0.008333333 0.008333333
> extent(Elevation)
class : Extent
xmin : -15.07722
xmax : -7.641806
ymin : 7.193611
ymax : 12.67694
> extent(Ann_precip)
class : Extent
xmin : -15.075
xmax : -7.641667
ymin : 7.191667
ymax : 12.675
Ma question est la suivante : pour que ces deux rasters aient des résolutions et des étendues identiques, est-il préférable de:
A) utiliser la raster::aggregate
fonction
> 0.008333333/0.002083333
[1] 4
Elevation_res<-aggregate(Elevation, fact=4, fun=mean)
et la raster::extend
fonction
Elevation_res<-extend(Elevation_res, Ann_precip, values=NA)
(bien qu'ici j'obtienne toujours des résolutions et des extensions différentes mais très similaires):
> res(Elevation_res)
[1] 0.008333333 0.008333333
> res(Ann_precip)
[1] 0.008333333 0.008333333
> res(Elevation_res)==res(Ann_precip)
[1] FALSE FALSE
> extent(Elevation_res)
class : Extent
xmin : -15.07722
xmax : -7.635556
ymin : 7.193611
ymax : 12.67694
> extent(Ann_precip)
class : Extent
xmin : -15.075
xmax : -7.641667
ymin : 7.191667
ymax : 12.675
ou
b) utiliser la raster::resample
fonction
Elevation_res<-resample(Elevation, Ann_precip, method="bilinear")
> res(Elevation_res)==res(Ann_precip)
[1] TRUE TRUE
> extent(Elevation_res)==extent(Ann_precip)
[1] TRUE
Je pose cette question parce que j'ai lu dans Wegmann et al (2016) (p110) (si je comprends bien) que le rééchantillonnage affecte considérablement les valeurs des pixels, et cela aggregate()
, extend()
et crop()
devrait être utilisé à la place. Étant donné que les différences de résolution et d'étendue sont assez faibles dans mon cas, puis-je supposer que le biais créé par le rééchantillonnage serait minime ici?
la source
bilinear
option est-elle équivalente àmean
la fonctionaggregate
et l'ngb
option est-elle équivalente àmodal
? Je fais référence aux cas où la cible est une résolution plus grossière (plus grande taille de pixel) que l'entrée qui doit être transformée.