Un enseignant a expliqué pourquoi en utilisant une analogie routière. Plus vous avez de voies, plus les voitures passent vite, où le nombre de voies représente évidemment l'épaisseur du fil et les voitures représentent les électrons. Assez facile.
Mais après un certain point, le fil ne devrait-il pas devenir si épais, que toute épaisseur après cela n'affecte pas la résistance? Par exemple, si vous avez 100 voitures sur une autoroute, une autoroute à 4 voies va permettre aux voitures de se déplacer beaucoup plus rapidement qu'une autoroute à 1 voie, car il y a moins de voitures par voie. Mais une autoroute à 1000 voies sera aussi efficace qu'une autoroute à 10000 voies, car sur les deux autoroutes, chaque voiture a sa propre voie. Après 100 voies, le nombre de voies n'offre pas de résistance.
Alors pourquoi l'augmentation de l'épaisseur du fil diminue-t-elle toujours la résistance?
la source
Réponses:
L'analogie de la voiture n'est pas si bonne, car les électrons ne circulent pas réellement d'une extrémité du fil à l'autre (enfin ils le font mais extrêmement lentement) et cela implique qu'il y a un peu d'espace entre les voitures, alors que ce serait plus comme un embouteillage quelle que soit la largeur de l'autoroute.
Cela ressemble plus à une ligne de boules de billard, et la force est appliquée à la première, et l'énergie est transférée à la dernière à travers toutes les boules intermédiaires (un peu comme le berceau de newtons, bien que les boules ne rebondissent pas vraiment les unes dans les autres) ). Les électrons libres rebondissent, parfois gênés (voir ci-dessous), la différence de potentiel provoquant une inclinaison moyenne vers la direction du courant.
Une analogie avec l'eau est meilleure - le tuyau est toujours plein d'eau, et pour la même pompe (batterie), la pression (tension) est toujours plus basse plus le tuyau est large, ce qui équivaut à plus de débit et une résistance plus faible.
Cette citation de la page Wiki sur la résistivité explique assez bien:
la source
Je vais aborder votre question d'une manière légèrement différente pour essayer de vous donner une compréhension un peu plus intuitive des raisons pour lesquelles la résistance diminue.
Considérons d'abord la résistance équivalente d'un circuit simple:
(source: electronics.dit.ie )
Vous pouvez voir cette équation dans un manuel, mais vous vous demandez peut-être "Mais vous avez ajouté plus de résistances! Comment cela pourrait-il faire baisser la résistance?".
Pour comprendre pourquoi, regardons la conductance électrique. La conductance est l'inverse de la résistance. C'est-à-dire que moins un matériau est résistif, plus il est conducteur. La conductance est définie commeG = 1R où g est la conductance et R est la résistance.
Maintenant, cette partie est intéressante, regardez ce qui se passe lorsque nous utilisons la conductance dans l'équation de résistance du circuit parallèle.
We see here that conductance increases as you add more resistors in parallel, and resistance decreases! Each resistor is able to conduct a certain amount of current. When you add a resistor in parallel, you are adding an additional path through which current can flow, and each resistor contributes a certain amount of conductance.
When you have a thicker wire, it effectively acts like this parallel circuit. Imagine you have a single strand of wire. It has a certain conductance and a certain resistance. Now imagine you have a wire that is composed of 20 individual strands of wire, and each strand is as thick as your previous single strand.
If each strand has a certain conductance, having a wire with 20 strands means that your conductance is now 20 times larger than the wire with only 1 strand. I'm using strands because it helps you see how a thicker wire is the same as having multiple smaller wires. Since the conductance increases, it means the resistance decreases (since it is the inverse of conductance).
la source
Forget the highway analogy. The resistance of a wire depends on 3 parameters: the conductivity of the material from which the wire is made, its cross sectional area, and its length. Highly conductive materials, such as copper and silver, are used to manufacture wire to achieve a low resistance. The longer a wire is the more resistance it has due to the longer path the electrons have to flow along to get from one end to the other. The larger the cross sectional area, the lower the resistance since the electrons have a larger area to flow through. This will continue to apply no matter how thick the wire is. The electron flow will adjust itself to whatever the wire thickness is.
la source
Electricity is nothing but the flow of electrons through a material. In one way, it's like a garden hose already full of water. When the water turned on (pressure applied) at the faucet, the pressure travels through the hose much faster than any particular water molecule, and water begins flowing out of the far end nearly immediately. A wire is chock full of electrons able to move when you apply a bit of electromotive force. Apply a voltage, and you don't have to wait for the first electrons in to traverse the wire, they start moving at the far end almost immediately.
Now think of a cross section of the wire . . . imagine drawing a line around the wire, perpendicular to the axis of the wire. Now imagine counting the number of electrons passing this line, through the circle that is the cross section of the wire. This is the current, measured in amps. There are a couple of ways you can have the same current. Lots of electrons drifting slowly by, or fewer electrons hauling a&& to get the same number passing through your cross section per second, and hence the same current.
How do you convince them to move faster? Apply a greater electromotive force. So in a wire with half the diameter, you'd have one fourth the cross-sectional area, which means one fourth the number of electrons available in any given length of wire to pass your line per second. What'cha gonna do to get that current up with fewer electrons available to move? You're gonna have to move them faster so that the same number can pass by per second by applying a higher voltage.
There you have it: A thinner wire requires a higher voltage to carry the same current. That's pretty much the definition of resistance, since
V/I = R
.la source
Do you know why doesn't the car analogy works fine? Even if we disregarded the possibility that electrons don't really actually move, you'd thing about them again as cars but not moving in straight lines! They move in a random zig zag paths. Therefore; the more lines the less possibility the cars will ever collide even with a zig zag path.
So you tacitly assumed electrons move in staright lanes (lines) just like cars, which in that case your assumption that the thickness of the wire won't affect. On the other hand, considering the cars to move in a non-straight lines, your assumed hypothesis won't fit your conclusion.
la source
What teacher should have said is :
la source
This is a great question! - The highway / car is an excellent analogy
In this analogy, you have to consider these factors.
Your design will have a requirement for voltage - in our model, voltage is the SPEED the cars need to travel.
The design will have a requirement for current - the is the NUMBER OF CARS needed to travel down the highway. (or volume)
The wire size / resistance is the NUMBER OF LANES.
Wattage, or power, is the combination of both voltage * current, or the number of cars travelling down the highway in a given time.
The highway has to be designed to meet the specifications for both speed and volume. If you have a very small current requirement, say, 1 car, you'll only ever need a one lane highway, because your can can travel as fast as possible, (high voltage). But if you have a high current requirement, 10,000 cars, you'll need a 100 lane highway. (depending on power requirements)
But take for example, the power grid - a transmission line for a city of 1 million people. That is very roughly 300,000 households, each using 1 kw of power. That means our line needs to deliver 3 Gigawatts of power! You could do this with 1 V @ 3 giga-amps, or 3 GV @ 1 amp, or something in between.
What voltage / current would be required to make the transmission line as small as possible?
la source