Quelqu'un peut-il m'aider à comparer ces requêtes et à expliquer pourquoi la requête PostgreSQL s'exécute en un peu moins de 2000 ms et que la requête d'agrégation MongoDB prend près de 9 000 ms et parfois jusqu'à 130 000 ms?
PostgreSQL 9.3.2 on x86_64-apple-darwin, compiled by i686-apple-darwin11-llvm-gcc-4.2 (GCC) 4.2.1 (Based on Apple Inc. build 5658) (LLVM build 2336.9.00), 64-bit
Requête PostgreSQL
SELECT locomotive_id,
SUM(date_trunc('second', datetime) - date_trunc('second', prevDatetime)) AS utilization_time
FROM bpkdmp
WHERE datetime >= '2013-7-26 00:00:00.0000'
AND datetime <= '2013-7-26 23:59:59.9999'
GROUP BY locomotive_id
order by locomotive_id
MongoDB Query
db.bpkdmp.aggregate([
{
$match : {
datetime : { $gte : new Date(2013,6,26, 0, 0, 0, 0), $lt : new Date(2013,6,26, 23, 59, 59, 9999) }
}
},
{
$project: {
locomotive_id : "$locomotive_id",
loco_time : { $subtract : ["$datetime", "$prevdatetime"] },
}
},
{
$group : {
_id : "$locomotive_id",
utilization_time : { $sum : "$loco_time" }
}
},
{
$sort : {_id : 1}
}
])
La table PostgreSQL et la collection MongoDB sont indexées sur datetime: 1 et locomotive_id: 1
Ces requêtes sont en cours de test sur un iMac avec un lecteur hybride de 2 To et 16 Go de mémoire. J'ai reçu des résultats comparables sur une machine Windows 7 avec 8 Go de mémoire et un SSD de 256 Go.
Merci!
** Mise à jour: je publie les résultats EXPLAIN (BUFFERS, ANALYZE) après la publication de ma question
"Sort (cost=146036.84..146036.88 rows=19 width=24) (actual time=2182.443..2182.457 rows=152 loops=1)"
" Sort Key: locomotive_id"
" Sort Method: quicksort Memory: 36kB"
" Buffers: shared hit=13095"
" -> HashAggregate (cost=146036.24..146036.43 rows=19 width=24) (actual time=2182.144..2182.360 rows=152 loops=1)"
" Buffers: shared hit=13095"
" -> Bitmap Heap Scan on bpkdmp (cost=12393.84..138736.97 rows=583942 width=24) (actual time=130.409..241.087 rows=559529 loops=1)"
" Recheck Cond: ((datetime >= '2013-07-26 00:00:00'::timestamp without time zone) AND (datetime <= '2013-07-26 23:59:59.9999'::timestamp without time zone))"
" Buffers: shared hit=13095"
" -> Bitmap Index Scan on bpkdmp_datetime_ix (cost=0.00..12247.85 rows=583942 width=0) (actual time=127.707..127.707 rows=559529 loops=1)"
" Index Cond: ((datetime >= '2013-07-26 00:00:00'::timestamp without time zone) AND (datetime <= '2013-07-26 23:59:59.9999'::timestamp without time zone))"
" Buffers: shared hit=1531"
"Total runtime: 2182.620 ms"
** Mise à jour: Mongo explique:
Expliquez de MongoDB
{
"serverPipeline" : [
{
"query" : {
"datetime" : {
"$gte" : ISODate("2013-07-26T04:00:00Z"),
"$lt" : ISODate("2013-07-27T04:00:08.999Z")
}
},
"projection" : {
"datetime" : 1,
"locomotive_id" : 1,
"prevdatetime" : 1,
"_id" : 1
},
"cursor" : {
"cursor" : "BtreeCursor datetime_1",
"isMultiKey" : false,
"n" : 559572,
"nscannedObjects" : 559572,
"nscanned" : 559572,
"nscannedObjectsAllPlans" : 559572,
"nscannedAllPlans" : 559572,
"scanAndOrder" : false,
"indexOnly" : false,
"nYields" : 1,
"nChunkSkips" : 0,
"millis" : 988,
"indexBounds" : {
"datetime" : [
[
ISODate("2013-07-26T04:00:00Z"),
ISODate("2013-07-27T04:00:08.999Z")
]
]
},
"allPlans" : [
{
"cursor" : "BtreeCursor datetime_1",
"n" : 559572,
"nscannedObjects" : 559572,
"nscanned" : 559572,
"indexBounds" : {
"datetime" : [
[
ISODate("2013-07-26T04:00:00Z"),
ISODate("2013-07-27T04:00:08.999Z")
]
]
}
}
],
"oldPlan" : {
"cursor" : "BtreeCursor datetime_1",
"indexBounds" : {
"datetime" : [
[
ISODate("2013-07-26T04:00:00Z"),
ISODate("2013-07-27T04:00:08.999Z")
]
]
}
},
"server" : "Michaels-iMac.local:27017"
}
},
{
"$project" : {
"locomotive_id" : "$locomotive_id",
"loco_time" : {
"$subtract" : [
"$datetime",
"$prevdatetime"
]
}
}
},
{
"$group" : {
"_id" : "$locomotive_id",
"utilization_time" : {
"$sum" : "$loco_time"
}
}
},
{
"$sort" : {
"sortKey" : {
"_id" : 1
}
}
}
],
"ok" : 1
}
performance
mongodb
postgresql
Mike A
la source
la source
EXPLAIN (BUFFERS, ANALYZE)
sortie d' affichage des requêtes PostgreSQL, veuillez. Aussi, version PostgreSQL. (J'ai voté pour le déplacer vers dba.SE){datetime: 1, prevdatetime: 1}
devrait fonctionner mieux que l'index actuel, car mongodb filtre sur datetime et prevdatetime. Cela diminuerait le nombre de documents à numériser.Réponses:
Tout ce que PostgreSQL fait ici est une analyse de tas bitmap
bpkdmp_datetime_ix
pour trouver des blocs qui pourraient contenir des lignes correspondantes, puis une analyse de tas de ces blocs pour trouver des lignes correspondantesbpkdmp
. Il regroupe ensuite les lignes dans des compartiments de hachage à l'aide des hachages de la clé de regroupement, additionne chaque compartiment et trie les résultats. C'est un plan de requête simple et basique - il pourrait mieux fonctionner si vous en jetez beaucoupwork_mem
, mais il pourrait ne pas le faire aussi.Il n'y a aucun parallélisme nulle part dans cette requête non plus; tout se passera sur un seul cœur.
Je ne peux que supposer que MongoDB utilise une méthode moins efficace ou ne bénéficie pas d'un index approprié. Vous auriez besoin d'afficher le
explain
pour la requête MongoDB pour qu'un commentaire utile soit possible; voircursor.explain
.la source