KOTH: TNT Run Challenge

25

Cela a été inspiré par un mini-jeu Minecraft. Les règles sont assez simples: vous courez et sautez, et chaque bloc sur lequel vous marchez disparaît une fois que vous avez marché dessus. Le but est d'être le dernier à gauche.

Votre bot devrait être un programme complet. Il doit accepter l'entrée comme argument de ligne de commande. L'entrée sera une carte du «monde»; Voici un exemple:

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxx xxxxxxxxxxxxxxxxxxxxxxxxxxx
xxx xxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxx x xxxxxxxxxxxxx@xxxxxxxxxxx
xxxxxx1xxxxxxxxxxxxx xxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx xxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx xxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx xxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx xxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx xxxxxxxxxxx
xxxxxxxxxx           xxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx
xxxxxxxxxxxxxxxxx x x xxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx xxxxxxxxxxx
xxxxxxxxxxxxxx xxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxx xxx xx3xxxxxxxxxx
xxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxx  x
xxxxxxxxxxxxxxxxxxxxxxxxxxx   xx
xxxxxxxxxxxxxxxxxxxxxxxxx      2
xxxxxxxxxxxxxxxxxxxxxxx         

La légende est la suivante:

x: solid block

 : empty air

@: your bot

1,2,3,4,5,6,7,8,9,0: other bots

Votre bot devrait sortir votre mouvement sous forme de paire d'entiers. Exemple: -1, 2déplace 1 bloc vers la gauche et 2 blocs vers le bas (l'origine des coordonnées se trouve dans le coin supérieur gauche).

Vous pouvez vous déplacer jusqu'à quatre pâtés de maisons, à une distance de Manhattan, de votre position actuelle. Si vous essayez de vous déplacer plus loin, le déplacement n'est pas valide. Tout mouvement qui vous ferait dépasser le bord vous mettra sur le bord à la place. Les déplacements incorrects seront ignorés.

Une fois que vous atterrissez sur un bloc, il est retiré; si vous restez sur le même bloc au prochain tour, vous tomberez. Deux robots peuvent atterrir sur le même bloc au même tour et les deux survivent; si cela se produit, les deux bots ne se verront qu'eux-mêmes et non l'autre bot.

Si vous devez stocker des fichiers pour la persistance, veuillez le faire dans un dossier avec le nom de votre bot. Vous ne pouvez pas lire les données persistantes des autres robots s'il en existe.

Le contrôleur de correspondance est disponible sur https://paste.ee/p/Xf65d .

Veuillez utiliser des langues pouvant être exécutées sur une installation Linux ou OSX standard.

Résultats actuels (100 tours):

JumpBot                   31
LookBot                   27
ShyBot                    26
Slow Bot                  15
KnightBot                 2
Moat Builder              0
UpBot                     0
Random Bot                0
Skyler
la source
Similaire, bien qu'une différence clé ici soit que vous pouvez "sauter" plusieurs blocs - vous ne pouvez donc pas simplement bloquer quelqu'un s'il voit ce que vous faites.
Skyler
vous ne pouvez pas fermer comme un dupe dans le bac à sable et je ne pense pas que ce soit tout à fait un
Blue
1
Les mouvements sont-ils simultanés ou séquentiels? L'entrée est-elle vraiment une chaîne contenant une nouvelle ligne comme argument de ligne de commande?
feersum
1
Je suggérerais d'appeler le bot une fois sans monde pour l'initialisation (vous ne savez pas si votre état enregistré en tant que fichier est du dernier tour ou de ce tour)
bauen1
Les mouvements de @feersum sont simultanés; l'entrée est en effet un argument de ligne de commande contenant une nouvelle ligne. Si vous en avez besoin en tant que stdin à la place, faites-le moi savoir et je pourrais probablement modifier le contrôleur pour permettre l'un ou l'autre.
Skyler

Réponses:

9

Bot lent (Python)

Il se déplace en ligne et vérifie ses mouvements avant de les faire (également des suicides quand il est le dernier en vie pour éviter de longs runtimes). Il a remporté 195/200 batailles dans mon tournoi test.

import sys
import re


class vec2(object):
    def __init__(self, x=0, y=0):
        self.x = x
        self.y = y

    def __add__(self, other):
        return vec2(self.x + other.x, self.y + other.y)

    def __sub__(self, other):
        return vec2(self.x - other.x, self.y - other.y)

    def __iadd__(self, other):
        return self + other

    def __isub__(self, other):
        return self - other

    def __neg__(self):
        return vec2(-self.x, -self.y)


def xy_to_i(vec=vec2(0, 0)):
    vec -= vec2(1, 1)
    vec.y += (vec.x - vec.x % 32) / 32
    return vec.x + vec.y * 33


def i_to_xy(i=0):
    vec = vec2(0, 0)
    vec.x = i % 33
    vec.y = (i - vec.x) / 32 + 1
    vec.x += 1
    return vec


class World(object):
    def __init__(self, map=''):
        self.map = map

    def getPlayerPosition(self):
        return i_to_xy(re.search('@', self.map).start())

    def getNumOtherBots(self):
        return len(re.findall('([0123456789])', ' ' + self.map + ' '))

    def get_tile(self, vec=vec2(0, 0)):
        i = xy_to_i(vec)
        return self.map[i:i + 1]


world = World(sys.argv[1])
pos = world.getPlayerPosition()


def check_moveV(vecd=vec2(0, 0)):
    try:
        vecn = pos + vecd

        if vecn.x > 32 or vecn.x < 1 or vecn.y > 32 or vecn.y < 1 \
            or abs(vecd.x) + abs(vecd.y) > 4:
            return False

        # Note: this will also avoid positions other bots are on (will disappear in the next step).

        return world.get_tile(vecn) == 'x'
    except:
        raise
        return False


def check_move(x=0, y=0):
    return check_moveV(vec2(x, y))


def run():
    if world.getNumOtherBots() == 0:
        return '0 0'  # Suicide if we are the only one left.

    # this creates the "line" pattern

    if check_move(0, -1):
        return '0 -1'

    if check_move(0, 1):
        return '0 1'

    if check_move(1, 0):
        return '1 0'

    if check_move(1, -1):
        return '1 -1'

    # If we get here, we are desperate and need to find a safe place to jump.

    for dx in range(-2, 2):
        for dy in range(-2, 2):
            if check_move(dx, dy):
                return '%i %i' % (dx, dy)

    # If we can't find a place to jump in close range, try long range.

    for dx in range(-4, 4):
        for dy in range(-4, 4):
            if check_move(dx, dy):
                return '%i %i' % (dx, dy)

    # If we get here, we are dead no matter what; accept our fate.

    return '0 0'


print(run())

Je ne suis pas un expert en python et il y a probablement 100 façons de le faire plus court / meilleur

bauen1
la source
1
Juste une chose, si vous êtes sur le même espace avec un autre bot et que vous êtes les deux derniers, le vôtre pensera que c'est le dernier et le suicide.
Timtech
quand
j'implémenterai la
Super, c'est ce que j'allais suggérer. Excellente réponse, au fait.
Timtech
6

JumpBot (C)

Essayez de sauter sur le terrain avec le plus de mouvements possibles au prochain tour.

#include <stdio.h>
#include <stdlib.h>

typedef struct map {
     char *raw_map;
     int size;
     int lines;
     char *pos;
} *MAP;

typedef struct cdata {
     int result;
     MAP m;
     int x;
     int y;
} *CDATA;

typedef struct mdata {
     int x;
     int y;
     int moves;
     int bx;
     int by;
     MAP m;
} *MDATA;

int numberOfMoves(MAP, int, int);
char getAt(MAP, int, int);

int abs(int x)
{
    return x < 0 ? x*-1 : x;
}

void count(void *data, int x, int y)
{
    CDATA d = (CDATA)data;
    char c = getAt(d->m, d->x + x, d->y + y);
    if(c != 'x') return;
    d->result++;
}

void choose(void *data, int x, int y)
{
    MDATA m = (MDATA)data;
    char c = getAt(m->m, m->x + x, m->y + y);
    if(c != 'x') return;
    int moves = numberOfMoves(m->m, m->x+x, m->y+y);
    if(moves > m->moves || (!m->bx && !m->by)) {
        m->moves = moves;
        m->bx = x;
        m->by = y;
    }
}

MAP parse_input(char *input)
{
    MAP m = malloc(sizeof *m);
    if(!m) {
        fprintf(stderr, "failed to alloc map\n");
        return NULL;
    }

    m->size=0;
    m->lines=1;
    m->pos=0;

    char *temp;
    for(temp = input;*temp;temp++) {
        switch(*temp) {
            case '\n': m->lines++; break;
            default: break;
        }
    }
    m->size = (temp + 1) - (input + m->lines);
    m->raw_map = malloc(m->size);
    if(!m->raw_map) {
        fprintf(stderr, "failed to alloc raw_map\n");
        return NULL;
    }

    int index = 0;
    for(temp = input; *temp; temp++) {
        if(*temp == '@') m->pos = m->raw_map + index;
        if(*temp != '\n') m->raw_map[index++] = *temp;
    }

    return m;
}

char getAt(MAP m, int x, int y)
{
    return m->raw_map[x + y*(m->size / m->lines)];
}

void posToXY(MAP m, int *x, int *y)
{
    int index = m->pos - m->raw_map;
    int length = m->size / m->lines;
    *x = index % length;
    *y = index / length;
}

typedef void (*DOFUNC)(void *, int, int);
void processMoves(MAP m, int x, int y, DOFUNC proc, void *data)
{
    int length = m->size / m->lines;    
    int left = x>=4 ? 4 : x;
    int right = x + 4 <= length ? 4 : length - (x + 1);
    int up = y >= 4 ? 4 : y;
    int down = y + 4 <= m->lines ? 4 : m->lines - (y + 1);

    for(int i=-left; i<=right; i++) {
        for(int j=-up; j<=down; j++) {
            if((abs(i) + abs(j) <= 4) && (i || j)) (*proc)(data, i, j);
        }
    }
}

int numberOfMoves(MAP m, int x, int y)
{
    struct cdata d;
    d.result = 0;
    d.x = x;
    d.y = y;
    d.m = m;
    processMoves(m, x, y, &count, &d);
    return d.result;
}

void getMove(MAP m, int *x, int *y)
{
    struct mdata d;
    posToXY(m, &d.x, &d.y);
    d.moves = 0;
    d.bx = 0;
    d.by = 0;
    d.m = m;
    processMoves(m, d.x, d.y, &choose, &d);
    *x = d.bx;
    *y = d.by;
}

int main(int argc, char *argv[])
{
    if(argc != 2) {
        fprintf(stderr, "bad number of arguments %d\n", argc);
        return -1;
    }

    MAP m = parse_input(argv[1]);
    int x=0, y=0;
    getMove(m, &x, &y);
    printf("%d %d\n", x, y);
    return 0;
}
Optokopper
la source
5

LookBot (C)

Bot simple dont les performances sont similaires à Slow Bot, sauf que celui-ci effectue des mouvements aléatoires possibles. Prévoyez d'améliorer cela à PredictBot.

#include <stdio.h>
#include <stdlib.h>
#include <stdbool.h>
#include <assert.h>
#include <sys/time.h>

#define WORLDSZ (32)
#define WORLDSZ_2 (WORLDSZ*WORLDSZ)

int max(int a,int b){return a>b?a:b;}
int min(int a,int b){return a<b?a:b;}

struct Position{
    int x,y;
};
typedef struct Position Position;

struct World{
    Position me;
    double enemymap[WORLDSZ][WORLDSZ]; //chance of enemy present
    bool open[WORLDSZ][WORLDSZ];
};
typedef struct World World;

void world_read(World *world,const char *arg){
    int x,y,i=0;
    for(y=0;y<WORLDSZ;y++,i++){
        for(x=0;x<WORLDSZ;x++,i++){
            if(arg[i]=='@'){world->me.x=x; world->me.y=y;}
            world->enemymap[y][x]=arg[i]>='0'&&arg[i]<='9';
            world->open[y][x]=arg[i]=='x';
        }
    }
}

//returns relative position
Position world_calcmove(World *world){
    const int mex=world->me.x,mey=world->me.y;
    int dx,dy;
    Position poss[40];
    int nposs=0;
    for(dy=max(-mey,-4);dy<=min(WORLDSZ-1-mey,4);dy++){
        const int absdy=abs(dy);
        for(dx=max(-mex,absdy-4);dx<=min(WORLDSZ-1-mex,4-absdy);dx++){
            if(!world->open[mey+dy][mex+dx])continue;
            poss[nposs].x=dx;
            poss[nposs++].y=dy;
        }
    }
    if(nposs==0){
        poss[0].x=poss[0].y=0;
        return poss[0];
    }
    return poss[rand()%nposs];
}

int main(int argc,char **argv){
    if(argc!=2){
        fprintf(stderr,"Call with world!\n");
        return 1;
    }
    struct timeval tv;
    gettimeofday(&tv,NULL);
    srand(tv.tv_sec*1000000ULL+tv.tv_usec);

    World world;
    world_read(&world,argv[1]);
    Position move=world_calcmove(&world);
    printf("%d %d\n",move.x,move.y);
}
tomsmeding
la source
5

Moat Builder (Python)

Si je creuse un fossé autour de moi, personne à l'extérieur ne peut me visser.

... également connu sous le nom de "Peignez-vous dans un simulateur de coin 2016".

import numpy
import sys
import math
import os

if not os.path.exists('./moatbuilder'):
    os.mkdir('./moatbuilder')

raw_field = sys.argv[1]
field = numpy.array([numpy.array(list(i)) for i in raw_field.splitlines()])
field_size = len(field)
x, y = raw_field.replace('\n','').index('@')%field_size, int(raw_field.replace('\n','').index('@')/field_size)
# If there are no holes, it's the first round - reset persistence
if raw_field.count(' ')==0:
    open('./moatbuilder/persistent','w').write('')

def bigmove(target):
    if x < target[0]:
        return min(4, target[0] - x), 0
    elif x > target[0]:
        return max(-4, target[0] - x), 0
    elif y < target[1]:
        return 0, min(4, target[1] - y)
    else:
        return 0, max(-4, target[1] - y)

def smallmove(target):
        if x < target[0]:
        try:
            return min(max(1, list(field[y][x:x+4]).index('x')), target[0] - x), 0
        except:
            return 0, 0
        elif x > target[0]:
        try:
            return max(min(-1, 0-list(reversed(field[y][x-4:x])).index('x')), target[0] - x), 0
        except:
            return 0, 0
        elif y < target[1]:  
        try:
                    return 0, min(max(1, list(field[:,x][y:y+4]).index('x')), target[1] - y)
        except:
            return 0, 0
        else:
        try:
            return 0, max(min(-1, 0-list(reversed(field[:,x][y-4:y])).index('x')), target[1] - y)
        except:
            return 0, 0


try:
    mode = int(open('./moatbuilder/persistent').read())
except:
    mode = 1

# Modes:
# 1 - go to the center
# 2 - go to an outside edge
# 3 - dig moat
if mode==1:
    dx, dy = bigmove((int(field_size/2), int(field_size/2)))
    if dx==0 and dy==0:
        open('./moatbuilder/persistent', 'w').write('2')
        mode = 2
if mode==2:
    dx, dy = bigmove((int(field_size-1), int(field_size/2)))
    if dx==0 and dy==0:
        dy = 1
        open('./moatbuilder/persistent', 'w').write('3')
        mode = 3
elif mode==3:
    direction = max(field_size-x, field_size-y)%2
    if direction == 1:
        if x > y:
            dx, dy = smallmove((y, y))
        else:
            dx, dy = smallmove((x, field_size - 1))
        if dx==0 and dy==0:
            dx = 1
    else:
        if y > x:
            dx, dy = smallmove((x, x))
        else:
            dx, dy = smallmove((field_size - 1, y))
        if dx==0 and dy==0:
            dy = 1

print "%i %i" % (dx, dy)
taixzo
la source
Cela fonctionne très bien, mais il perdra contre les bots qui vivent longtemps (c'est pourquoi je choisis un motif de ligne btw)
bauen1
Vous voudrez peut-être corriger votre indentation dans smallmove () ... Mon python ne mange pas ça :)
tomsmeding
5

Monte (Python)

Désolé, ce jeu de mots devait juste être fait.

Quoi qu'il en soit, ce bot fonctionne en effectuant une recherche d'arbre Monte Carlo sur tous les ensembles de mouvements possibles. Pensez à JumpBot, seulement plus en profondeur.

Pour fonctionner, il a besoin d'un argument de ligne de commande supplémentaire (peut être spécifié dans le contrôleur). Il contrôle combien de temps le bot doit rechercher (en ms); J'ai utilisé 750-1500 dans les tests.

Code:

import sys
import math
import copy
#from profilestats import profile
pmap = sys.argv[2].split("\n")
pmap = [list(r) for r in pmap]

#find a player
#@profile
def find(tmap,bot):
   r,c=-1,-1
   for row in range(len(tmap)):
      for col in range(len(tmap[row])):
         if tmap[row][col]==bot:
            r,c=row,col
   return r,c

mer,mec=find(pmap,'@')
bots=[(mer,mec)]

#find all the other players
for b in range(10):
   r,c=find(pmap,str(b))
   if r != -1:
      bots.append((r,c))

#getter function, treats oob as spaces
def get(tmap,r,c):
   if r<0 or r>=len(tmap) or c<0 or c>=len(tmap[r]):
      return ' '
   return tmap[r][c]

#returns manhattan distance between 2 positions  
def dist(r1,c1,r2,c2):
   return abs(r1-r2)+abs(c1-c2)

#gets all possible moves from a map
#@profile 
def moves(tmap,ther=-1,thec=-1):
   if ther==-1: ther,thec = find(tmap,'@')
   pos=[]
   for r in range(-4,5):
      for c in range(-4,5):
         if abs(r)+abs(c)<=4 and get(tmap,ther+r,thec+c)=='x':
            pos.append((r,c))
   return pos


ttlmoves = 40
#monte-carlo tree node
class MCNode:
   def __init__(self):
      self.wins=0
      self.simu=0
      self.chld=[]
      self.cmap=[[]]
      self.prnt=None
      self.r=-1
      self.c=-1
   def add(self, cnode):
      self.chld.append(cnode)
      cnode.prnt = self
   #used to balance exploitation and exploration
   #@profile
   def param(self,cin):
      return self.chld[cin].wins/self.chld[cin].simu\
             + 1.414 * math.sqrt( math.log(self.simu) / \
             self.chld[cin].simu )
   #finds the child with the highest param
   #@profile
   def best(self):
      vals = [self.param(x) for x in range(len(self.chld))]
      binx = 0
      bval = vals[0]
      for x in range(len(vals)):
         if vals[x]>bval:
            binx=x
            bval=vals[x]
      return self.chld[binx]


#update all the parents 
#@profile   
def backprog(leaf):
   par = leaf.prnt
   if not (par is None):
      par.wins+=leaf.wins
      par.simu+=leaf.simu
      backprog(par)

#expand all the moves from a position
#@profile
def expand(rootn):
   ther,thec = rootn.r,rootn.c
   for r,c in moves(rootn.cmap,rootn.r,rootn.c):
      nmap = copy.deepcopy(rootn.cmap)
      nmap[ther+r][thec+c] = '@'
      nmap[ther][thec]=' '
      nnode = MCNode()
      nm = moves(nmap,ther+r,ther+c)
      nnode.wins = len(nm)
      nnode.simu = ttlmoves
      nnode.r=ther+r
      nnode.c=thec+c
      nnode.cmap = nmap
      rootn.add(nnode)
      backprog(nnode)

root = MCNode()
m = moves(pmap,mer,mec)
root.wins = len(m)
root.simu = ttlmoves
root.cmap=copy.deepcopy(pmap)
root.r=mer
root.c=mec
expand(root)

#simulate a bunch of outcomes
import time
curt  = lambda: int(round(time.time() * 1000))
strt = curt()
ttme = int(sys.argv[1])
while curt()-strt < ttme:
   tnode=root
   while tnode.chld:
      tnode=tnode.best()
   expand(tnode)

#choose the most explored one
bnode = max(root.chld,key=lambda n:n.simu)

#output
print("{} {}".format((bnode.c-mec),(bnode.r-mer)))

Essais

25 tours:

MonteBot            14
JumpBot             6
ShyBot              5
LookBot             1
KnightBot           0
SlowBot             0

100 tours:

JumpBot             38
MonteBot            36
ShyBot              15
LookBot             14
SlowBot             2
KnightBot           0

200 tours:

MonteBot            87
JumpBot             64
LookBot             33
ShyBot              21
SlowBot             5
KnightBot           0

Toutes les simulations ci-dessus ont utilisé un temps de recherche de 750. Ce bot serait probablement encore meilleur avec un temps de recherche plus long (je ne sais pas quel est le maximum autorisé).

Améliorations

Ce bot a encore besoin d'améliorations dans:

  1. Performance: il a besoin de tout le temps pour chercher.
  2. Prédiction: elle ne tiendra pas compte des mouvements des autres bots.
  3. Équilibre: je ne sais pas si la formule UCT que j'utilise pour calculer le nœud à explorer est optimale.
Bleu
la source
4

ShyBot (Python)

Ce bot n'aime vraiment pas les autres bots et essaiera de s'éloigner si possible. ShyBot est également très prudent quant à sa position; il ne marchera même pas sur d'autres robots. Cependant, ShyBot perd encore souvent, ce qui rend l'insécurité.

import sys
map = sys.argv[1]
map = map.split("\n")
map = [list(r) for r in map]

def find(map,bot):
   r,c=-1,-1
   for row in range(len(map)):
      for col in range(len(map[row])):
         if map[row][col]==bot:
            r,c=row,col
   return r,c


mer,mec=find(map,'@')
bots=[(mer,mec)]

for b in range(10):
   r,c=find(map,str(b))
   if r != -1:
      bots.append((r,c))

avg=[0,0]

for b in bots:
   avg[0]+=b[0]
   avg[1]+=b[1]

avg[0] = avg[0]/len(bots)
avg[1] = avg[1]/len(bots)

def get(map,r,c):
   if r<0 or r>=len(map) or c<0 or c>=len(map[r]):
      return ' '
   return map[r][c]

def dist(r1,c1,r2,c2):
   return abs(r1-r2)+abs(c1-c2)

pos=[]
for r in range(-4,5):
   for c in range(-4,5):
      if abs(r)+abs(c)<=4 and get(map,mer+r,mec+c)=='x':
         pos.append((r,c))

if len(pos)==0:
   bestr,bestc=0,0
else:
   bestr,bestc=pos[0]

for r,c in pos:
   if dist(mer+r,mec+c,avg[0],avg[1])>dist(mer+bestr,mec+bestc,avg[0],avg[1]):
      bestr,bestc=r,c

print(str(bestc)+" "+str(bestr))
Bleu
la source
4

KnightBot (Java)

Cela fonctionne comme les échecs et est nommé comme Twitch ...

...

.........

............................Désolé...

public class KnightBot{
   private static String[] map;
   private static int myx;
   private static int myy;
   public static void main(String[] args){
      map=args[0].split("\n");
      for(int y=0;y<map.length;y++){
         if(map[y].indexOf("@")!=-1){
            myy = y;
            myx = map[y].indexOf("@");
            break;
         }
      }
      System.out.println(move((int)(Math.random()*4),4));
   }
   public static String move(int dir,int tries){
      if(tries==0)return "0 0";
      int x=dir<2?1:-1;
      int y=dir%2==0?2:-2;
      if((myx+x<0||myx+x>=map[0].length()||myy+y<0||myy+y>=map.length)||map[y+myy].charAt(myx+x)!='x'){
         x=dir<2?2:-2;
         y=dir%2==0?1:-1;
      }
      if((myx+x<0||myx+x>=map[0].length()||myy+y<0||myy+y>=map.length)||map[y+myy].charAt(myx+x)!='x')
         return move(++dir>3?0:dir,tries-1);
      return x+" "+y;
   }
}

SwirlyBot (Java)

Ce ne sont clairement pas les solutions optimales, mais j'espère qu'elles seront utiles pour les tests de niveau intermédiaire.

public class SwirlyBot{
   private static String[] map;
   private static int myx;
   private static int myy;
   public static void main(String[] args){
      map=args[0].split("\n");
      for(int y=0;y<map.length;y++){
         if(map[y].indexOf("@")!=-1){
            myy = y;
            myx = map[y].indexOf("@");
            break;
         }
      }
      System.out.println(move(0));
   }
   public static String move(int dir){
      switch(dir){
         case 0:
            if(!safe(0,1)){
               if(safe(1,1)){
                  return "1 1";//Down-Right
               }else{
                  if(safe(1,0)){
                     return "1 0";//Right
                  }
               }
            }
            break;
         case 1:
            if(!safe(1,0)){
               if(safe(1,-1)){
                  return "1 -1";//Up-Right
               }else{
                  if(safe(0,-1)){
                     return "0 -1";//Up
                  }
               }
            }
            break;
         case 2:
            if(!safe(0,-1)){
               if(safe(-1,-1)){
                  return "-1 -1";//Up-Left
               }else{
                  if(safe(-1,0)){
                     return "-1 0";//Left
                  }
               }
            }
            break;
         case 3:
            if(!safe(-1,0)){
               if(safe(-1,1)){
                  return "-1 1";//Down-Left
               }else{
                  if(safe(0,1)){
                     return "0 1";//Down
                  }
               }
            }
            break;
         case 4:
            if(safe(0,-1))return "0 -1";
            break;
         case 5:
            if(!safe(0,2)){
               if(safe(1,2)){
                  return "1 2";//Down-Right
               }else{
                  if(safe(2,2)){
                     return "2 2";
                  }else{
                     if(safe(2,1)){
                        return "2 1";
                     }else{
                        if(safe(2,0)){
                           return "2 0";//Right
                        }
                     }
                  }
               }
            }
            break;
         case 6:
            if(!safe(2,0)){
               if(safe(2,-1)){
                  return "2 -1";//Up-Right
               }else{
                  if(safe(2,-2)){
                     return "2 -2";
                  }else{
                     if(safe(1,-2)){
                        return "1 -2";
                     }else{
                        if(safe(0,-2)){
                           return "0 -2";//Up
                        }
                     }
                  }
               }
            }
            break;
         case 7:
            if(!safe(0,-2)){
               if(safe(-1,-2)){
                  return "-1 -2";//Up-Left
               }else{
                  if(safe(-2,-2)){
                     return "-2 -2";
                  }else{
                     if(safe(-2,-1)){
                        return "-2 -1";
                     }else{
                        if(safe(-2,0)){
                           return "-2 0";//Left
                        }
                     }
                  }
               }
            }
            break;
         case 8:
            if(!safe(-2,0)){
               if(safe(-2,1)){
                  return "-2 1";//Down-Left
               }else{
                  if(safe(-2,2)){
                     return "-2 2";
                  }else{
                     if(safe(-1,2)){
                        return "-1 2";
                     }else{
                        if(safe(0,2)){
                           return "0 2";//Down
                        }
                     }
                  }
               }
            }
            break;
      }
      if(dir<8)return move(dir+1);
      return "0 -1";
   }
   public static boolean safe(int x, int y){
      return !((myx+x<0||myx+x>=map[0].length()||myy+y<0||myy+y>=map.length)||map[y+myy].charAt(myx+x)!='x');
   }
}
Cheeseitup
la source
Bonjour et bienvenue chez PPCG! Très bonne réponse!
NoOneIsHere
2

Bot aléatoire, UpBot

Deux bots de départ pour affronter:

Bot aléatoire: un exemple de robot qui se déplace de manière aléatoire.

import random

x = random.randint(-4, 4)
y = random.randint(max(-4, -4 + abs(x)), min(4, 4 - abs(x)))
print x, y

UpBot: Un exemple de bot qui monte.

print '0 -1'
Skyler
la source
J'ai effectué 10 tours de test pour ma réponse (maintenant supprimée) Random Walker, et de manière hilarante, UpBot se porte très bien. Il a obtenu 7 tours sur 10.
user48538
Voici les résultats complets du test , fournis sous forme de fichier zip.
user48538
UpBot fait bien parce qu'il ne déplace qu'un bloc à la fois, donc cela lui prend généralement plus de temps pour courir dans un mur que Random Bot pour marcher dans un trou.
Skyler
1
@ zyabin101: vous savez, vous pouvez simplement l'exécuter, appuyez sur 'y' pour jouer un tournoi complet et entrez 10 pour les tours.
Skyler
1

StalkerBot (Python)

Sera aussi proche que possible du bot le plus proche qu'il voit. Cible le suicide automatique (inutile) de Slow Bot. (Si je suis sur la même case que lui et qu'il n'y a pas d'autres joueurs, il ne me verra pas et se suicidera.)

#!/usr/bin/python3
from math import inf
from sys import argv

class Vector:
    def __init__(self, x=0, y=0):
        self.x = x
        self.y = y

    def __add__(self, other):
        return Vector(self.x + other.x, self.y + other.y)

    def __sub__(self, other):
        return Vector(self.x - other.x, self.y - other.y)

    def __neg__(self):
        return Vector(-self.x, -self.y)

    def __abs__(self):
        return self.x ** 2 + self.y ** 2  # Technically the square of the magnitude, but we only need it for comparison.

    def __iter__(self):
        yield self.x
        yield self.y

def get_location(grid, target='@'):
    for i, line in enumerate(grid):
        for j, char in enumerate(line):
            if char == target:
                return Vector(i, j)

def main(grid):
    my_location = get_location()

    min_distance = inf
    min_distance_direction = None

    for i in range(10):
        enemy_location = get_location(str(i))

        if enemy_location is not None:
            direction = enemy_location - my_location
            distance = abs(direction)

            if distance < current_min:
                min_distance = distance
                min_distance_direction = direction

            if distance == 1:
                break

    if min_distance_direction is not None:
        return min_distance_direction

    for d in range(1, 5):
        for x in range(-d, d):
            for y in (d - abs(x), abs(x) - d):
                if grid[x][y] == ' ':
                    return x, y

    return 0, 0

if __name__ == '__main__':
    print(*main(argv[1].splitlines()))
Solomon Ucko
la source
1
Juste pour info, en général, nous n'approuvons pas les modifications qui modifient le code (comme celle que vous avez faite sur une autre réponse à cette question). J'ai approuvé celui-là car il semblait que cela ne touchait pas la logique ou quoi que ce soit, mais que je l'avais nettoyé, mais ça ne volera pas sur la plupart des réponses. Celui-là pourrait certainement l'utiliser.
Rɪᴋᴇʀ
@Riker Compris. Il est logique de ne pas changer la logique, mais j'avais du mal à lire ce code, j'ai donc décidé de nettoyer le formatage.
Solomon Ucko
1
Pas de problème, mais gardez à l'esprit que les modifications au golf et similaires seront probablement rejetées sur d'autres questions à l'avenir. Je suis d'accord pour dire que le code que vous avez modifié était un peu bizarre.
Rɪᴋᴇʀ
1
@Riker Fondamentalement, n'effectuez aucune modification qui pourrait affecter le score.
Solomon Ucko