Romanisation du code

33

Le défi consiste à créer un code valide en chiffres romains dans la langue de votre choix.

Ils ne doivent pas apparaître à l'intérieur de chaînes ou quoi que ce soit de similaire, mais fonctionnent comme tout autre jeton, littéral tel que des nombres, des caractères ou des chaînes (en arabe ); ou identificateurs de variable / méthode / fonction, etc.

Par exemple, en Java, les éléments suivants doivent être compilés et exécutés comme s'ils avaient iété initialisés 42:

int i = XLII;

L’analyse des chiffres est secondaire, vous pouvez donc utiliser une bibliothèque si vous le souhaitez, mais c’est un concours de popularité qui encourage la créativité.

Vous ne pouvez utiliser aucune langue qui utilise réellement des chiffres romains, s'il en est une.

Bonne chance.

Daniero
la source
1
Nous avons donc besoin d’écrire une extension de la langue pour en créer une nouvelle?
Kendall Frey
4
Je vais me plaindre si je veux, parce que les langues que j'utilise ne sont pas extensibles, alors je ne peux même pas participer.
Kendall Frey
3
@KendallFrey La source devrait être compilée et exécutée. Pour Java, vous pouvez écrire un "compilateur" qui édite le source, puis le compile par programme . Une façon de procéder consiste à exécuter uneProcess
Justin
1
Cela semble ennuyeux dans la plupart des langues. Par exemple, en python, je voudrais simplement écrire un script qui utilise astpour analyser le source. Insérez au sommet de l'AST la définition des chiffres romains compris entre 1 et 3999. Compilez le tout et exécutez-le. C'est ennuyeux d'écrire le code pour gérer le processus.
Bakuriu
2
@ Bakuriu et votre commentaire est ennuyeux aussi. Il s’agit d’un concours de popularité, vous devriez donc essayer de trouver quelque chose d’amusant. Je pense qu'il y a quelques bonnes réponses ici qui sont plus imaginatives (que la compilation d'un langage de script).
daniero

Réponses:

40

C

Il n'y a que peu de chiffres romains, car 4000 et plus n'ont pas de notation standard et le préprocesseur est un outil de décompression formidable, surtout si vous n'avez pas de problème avec le comportement indéfini du code.

enum{_
#define a_
#define d_
#define g_
#define j_
#define a(x)c(x)b
#define b(x)c(x)a
#define c(x)x,
#define d(x)f(x)e
#define e(x)f(x)d
#define f(x)m(a(x)(x##I)(x##II)(x##III)(x##IV)(x##V)(x##VI)(x##VII)(x##VIII)(x##IX))
#define g(x)i(x)h
#define h(x)i(x)g
#define i(x)m(d(x)(x##X)(x##XX)(x##XXX)(x##XL)(x##L)(x##LX)(x##LXX)(x##LXXX)(x##XC))
#define j(x)l(x)k
#define k(x)l(x)j
#define l(x)m(g(x)(x##C)(x##CC)(x##CCC)(x##CD)(x##D)(x##DC)(x##DCC)(x##DCCC)(x##CM))
#define m(x)n(x)
#define n(...)__VA_ARGS__##_
m(j()(M)(MM)(MMM))
};

This defines all Roman numerals from I to MMMCMXCIX as enumeration constants, plus _ (which can be replaced by anything you like) as zero.

hvd
la source
12
Absolutely brilliant, propose adding it to the next C release (C2X?) as <roman.h>! With %r and %R printf formats!
3
I thought i know how to use the preprocessor, until now :| Could you update your answer with a minimal usage example of this enum?
klingt.net
@YiminRong And scanf too :) @klingt.net I'm not sure what sort of example you're looking for. A fairly simple one would be int main() { return MMMCMXCIX - M - M - M - CM - XC - IX; }
hvd
I like the idea, but why did you opt to go with undefined behavior when defined behavior was fairly simple? Not judging, just curious?
CasaDeRobison
1
@CasaDeRobison For fun, mainly. I like it because it is one of the very few cases of undefined behaviour at preprocessing time that isn't flagged as an error by current compilers, and likely won't be in the future. I don't ever write anything like that in code that's meant to be useful, but code posted here isn't meant to be useful, so what better occasion to try it?
hvd
15

Ruby

def Object.const_missing(const)
  i = const.to_s
  if i =~ /^[IVXLCDM]+$/
    #http://codegolf.stackexchange.com/questions/16254/convert-arbitrary-roman-numeral-input-to-integer-output
    %w[IV,4 IX,9 XL,40 XC,90 CD,400 CM,900 I,1 V,5 X,10 L,50 C,100 D,500 M,1000].map{|s|k,v=s.split ?,;i.gsub!(k,?++v)}
    eval(i)
  else
    super
  end
end

Any (uppercase) Roman numerals will now be parsed like their decimal equivalents. The only issue is that they're still assignable: you can do X = 9, but not 10 = 9. I don't think there's a way to fix that.

histocrat
la source
1
This is perfect. The assignment thing is not an issue; You can use assignments to do all sorts of stupid things.
daniero
12

JavaScript (ES6)

Use Proxy to catch roman numerals.

Testable in Firefox (latest) on JSFiddle.
Not testable in Chrome (with Traceur) since Proxy implementation is broken.

// Convert roman numeral to integer.
// Borrowed from http://codegolf.stackexchange.com/a/20702/10920
var toDecimal = (s) => {
  var n = 0;
  var X = {
    M: 1e3, CM: 900, D: 500, CD: 400, C: 100, XC: 90, 
    L: 50,  XL: 40,  X: 10,  IX: 9,   V: 5,   IV: 4,  I: 1
  };

  s.replace(/[MDLV]|C[MD]?|X[CL]?|I[XV]?/g, (d) => n += X[d]);
  return n;
};

// Whether a string is a valid roman numeral.
var isRoman = (s) => s.match(/^[MDCLXVI]+$/);

// Profixy global environment to catch roman numerals.
// Since it uses `this`, global definitions are still accessible.
var romanEnv = new Proxy(this, {
  get: (target, name) => isRoman(name) ? toDecimal(name) : target[name],
  set: (target, name, value) => isRoman(name) ? undefined : (target[name] = value),
  has: (target, name) => isRoman(name) || name in target,
  hasOwn: (target, name) => name in target
});

Usage:

with (romanEnv) {
  var i = MIV + XLVIII;
  console.log(i); // 1052
}
Florent
la source
10

C & C++ (Updated Answer)

As observed in a comment, my original solution had two problems:

  1. Optional parameters are only available in C99 and later standards of the language family.
  2. Trailing comma in enum definition is also specific to C99 and later.

Since I wanted my code to be as generic as possible to work on older platforms, I decided to take another stab at it. It is longer than it was before, but it works on compilers and preprocessors set to C89/C90 compatibility mode. All macros are passed an appropriate number of arguments in the source code, though sometimes those macros "expand" into nothing.

Visual C++ 2013 (aka version 12) emits warnings about missing parameters, but neither mcpp (an open source preprocessor that claims high compliance with the standard) nor gcc 4.8.1 (with -std=iso9899:1990 -pedantic-errors switches) emit warnings or errors for those macro invocations with an effectively empty argument list.

After reviewing the relevant standard (ANSI/ISO 9899-1990, 6.8.3, Macro Replacement), I think there is sufficient ambiguity that this should not be considered non-standard. "The number of arguments in an invocation of a function-like macro shall agree with the number of parameters in the macro definition...". It does not seem to preclude an empty argument list as long as the needed parentheses (and commas in the case of multiple parameters) are in place to invoke the macro

As for the trailing comma problem, that is resolved by adding an extra identifier to the enumeration (in my case, MMMM which seems as reasonable as anything for the identifier to follow 3999 even if it doesn't obey the accepted rules of Roman numeral sequencing exactly).

A slightly cleaner solution would involve moving the enum and supporting macros to a separate header file as was implied in a comment elsewhere, and using undef of the macro names immediately after they were used so as to avoid polluting the namespace. Better macro names should undoubtedly be chosen as well, but this is adequate for the task at hand.

My updated solution, followed by my original solution:

#define _0(i,v,x)
#define _1(i,v,x) i
#define _2(i,v,x) i##i
#define _3(i,v,x) i##i##i
#define _4(i,v,x) i##v
#define _5(i,v,x) v
#define _6(i,v,x) v##i
#define _7(i,v,x) v##i##i
#define _8(i,v,x) v##i##i##i
#define _9(i,v,x) i##x

#define k(p,s) p##s,
#define j(p,s) k(p,s)
#define i(p) j(p,_0(I,V,X)) j(p,_1(I,V,X)) j(p,_2(I,V,X)) j(p,_3(I,V,X)) j(p,_4(I,V,X)) j(p,_5(I,V,X)) j(p,_6(I,V,X)) j(p,_7(I,V,X)) j(p,_8(I,V,X)) j(p,_9(I,V,X))
#define h(p,s) i(p##s)
#define g(p,s) h(p,s)
#define f(p) g(p,_0(X,L,C)) g(p,_1(X,L,C)) g(p,_2(X,L,C)) g(p,_3(X,L,C)) g(p,_4(X,L,C)) g(p,_5(X,L,C)) g(p,_6(X,L,C)) g(p,_7(X,L,C)) g(p,_8(X,L,C)) g(p,_9(X,L,C))
#define e(p,s) f(p##s)
#define d(p,s) e(p,s)
#define c(p) d(p,_0(C,D,M)) d(p,_1(C,D,M)) d(p,_2(C,D,M)) d(p,_3(C,D,M)) d(p,_4(C,D,M)) d(p,_5(C,D,M)) d(p,_6(C,D,M)) d(p,_7(C,D,M)) d(p,_8(C,D,M)) d(p,_9(C,D,M))
#define b(p) c(p)
#define a() b(_0(M,N,O)) b(_1(M,N,O)) b(_2(M,N,O)) b(_3(M,N,O))

enum { _ a() MMMM };

#include <stdio.h>

int main(int argc, char** argv)
{
    printf("%d", MMMCMXCIX * MMMCMXCIX);
    return 0;
}

The original answer (which received the first six upvotes, so if no one ever upvotes this again, you shouldn't think my updated solution got the upvotes):

In the same spirit as an earlier answer, but done in a way that should be portable using only defined behavior (though different environments don't always agree on some aspects of the preprocessor). Treats some parameters as optional, ignores others, it should work on preprocessors that don't support the __VA_ARGS__ macro, including C++, it uses indirect macros to ensure parameters are expanded before token pasting, and finally it is shorter and I think easier to read (though it is still tricky and probably not easy to read, just easier):

#define g(_,__) _, _##I, _##II, _##III, _##IV, _##V, _##VI, _##VII, _##VIII, _##IX,
#define f(_,__) g(_,)
#define e(_,__) f(_,) f(_##X,) f(_##XX,) f(_##XXX,) f(_##XL,) f(_##L,) f(_##LX,) f(_##LXX,) f(_##LXXX,) f(_##XC,)
#define d(_,__) e(_,)
#define c(_,__) d(_,) d(_##C,) d(_##CC,) d(_##CCC,) d(_##CD,) d(_##D,) d(_##DC,) d(_##DCC,) d(_##DCCC,) d(_##CM,)
#define b(_,__) c(_,)
#define a       b(,) b(M,) b(MM,) b(MMM,)
enum { _ a };
CasaDeRobison
la source
1
+1, but note that the use of empty macro arguments, and the comma at the end of an enumerator list, are both new features of C99 and C++11, and both C99 and C++11 do support __VA_ARGS__.
hvd
Dang if you're not right! I guess I've been seeing this used as extensions all this time. Ah well. :)
CasaDeRobison
8

Common Lisp

The following is a rather lengthy explanation of how I made a macro that you can use like this:

(roman-progn
  (+ XIV XXVIII))

When a macro is called in Common Lisp, it basically acts like a function, only that the arguments are received before they are evaluated. Actually, since in Common Lisp code is just data, what we receive is a (nested) list representing an unparsed syntax tree that we can do whatever we want with, and it's done in compile-time.

Helper functions

The first step of the plan is to take this tree and scan it for anything that looks like Roman Numerals. This being Lisp and all, let's try to do it somewhat functionally: We need a function that will do a deep traversal of a tree and return every object for which a provided function searchp returns true. This one is even (semi) tail-recursive.

(defun deep-find-all (searchp tree &optional found)
  (if (null tree)
    found
    (let* ((item (car tree))
           (new-found (if (consp item)
                        (deep-find-all searchp item found)
                        (if (funcall searchp item)
                          (cons item found)
                          found))))

      (deep-find-all searchp (cdr tree) new-found))))

Then some code for parsing the roman numerals, courtesy of Rosetta Code:

(defun mapcn (chars nums string)
  (loop as char across string as i = (position char chars) collect (and i (nth i nums))))

(defun parse-roman (R)
  (loop with nums = (mapcn "IVXLCDM" '(1 5 10 50 100 500 1000) R)
        as (A B) on nums if A sum (if (and B (< A B)) (- A) A)))

The actual macro

We take the syntax tree (body), search it with our deep-find-all procedure and somehow make the roman numerals that we find, available.

(defmacro roman-progn (&body body)
  (let* ((symbols (deep-find-all (lambda (sym)
                                   (and
                                     (symbolp sym)
                                     (loop for c across (string sym)
                                           always (find c "IVXLCDM")))) body))
         (parsed-romans (mapcar (lambda (sym)
                                  (list sym (parse-roman (string sym)))) symbols)))

    (if parsed-romans
      `(let (,@parsed-romans)
         ,@body)  
      `(progn
         ,@body))))

So, what is 1 + 2 + 3 + (4 * (5 + 6)) + 7 ?

(roman-progn
  (+ I II III (* IV (+ V VI)) VII))
=> 57

And to see what actually happened when the macro was invoked:

(macroexpand-1 +)
=> (LET ((VII 7) (VI 6) (V 5) (IV 4) (III 3) (II 2) (I 1))
   (+ I II III (* IV (+ V VI)) VII))
daniero
la source
7

Lua

setmetatable(_G, {
    __index = function(_, k)
        if k:match"^[IVXLCDM]*$" then
            local n = 0
            for _, v in ipairs{{IV = 4}, {IX = 9}, {I = 1}, {V = 5}, {XL = 40}, {X = 10}, {XC = 900}, {CD = 400}, {CM = 900}, {C = 100}, {D = 500}, {M = 1000}} do
                local p, q = next(v)
                local r
                k, r = k:gsub(p, "")
                n = n + r * q
            end
            return n
        end
    end
})

Simply a fallback __index for the global table. The actual conversion using gsub turned out much prettier than I imagined it to be.

mniip
la source
5

Postscript

I tried to follow the C one but I didn't understand it. So I did it this way:

/strcat{
    2 copy length exch length add string % 1 2 3 
    3 2 roll % 2 3 1 
    2 copy 0 exch putinterval % 2 3 1 
    2 copy length % 2 3 1 3 n(1)
    5 4 roll putinterval % 3 1 
    pop 
}def
/S{
    dup length string cvs 
} def 
[
/u {/ /I /II /III /IV /V /VI /VII /VIII /IX}
/t {/ /X /XX /XXX /XL /L /LX /LXX /LXXX /XC}
/h {/ /C /CC /CCC /CD /D /DC /DCC /DCCC /CM}
/m {/ /M /MM /MMM /MMMM}
>>begin
[0
[
[m]{ % M*
    S   
    [h]{ % M* H*
        S
        [t]{ % M* H* T*
            S
            [u]{ % M* H* T* U*
                S
                4 copy
                strcat strcat strcat % M* H* T* U* M*H*T*U*
                5 1 roll % M*H*T*U* M* H* T* U*
                pop % (M*H*T*U*)* M* H* T*
            }forall
            pop % (M*H*T*U*)** M* H*
        }forall
        pop % (M*H*T*U*)*** M*
    }forall
    pop % (M*H*T*U*)****
}forall
]
{exch dup 1 add}forall pop>>end begin

Postscript doesn't have enum but we can construct a dictionary with sequential integer values and fold them into an array. This reduces the problem to generating all the strings in sequence, which is done by concatenating in 4 nested loops. So it generates all the strings, then interleaves each string with an increasing counter value, resulting in a long series of <string> <int> pairs on the stack which are wrapped in <<...>> to produce a dictionary object.

The program constructs and installs a dictionary mapping all names for the roman numerals to their corresponding value. So mentioning the names in source text invokes the automatic name-lookup and yields the integer value on the stack.

II IV MC pstack

prints

2
4
600
luser droog
la source
4

Smalltalk (Smalltalk/X) (87/101 chars)

of course we could easily modify the parser's tokenizer (as it is part of the class library, and as such open for modification, and always present), but a challenge is to affect only evaluations in a given context, so that the rest of the system works as usual.

Version 1:

define a number of variables in the evaluation namespace. So this will affect interactive doIts (aka evals):

(1 to:3999) do:[:n | 
    Workspace workspaceVariables at:(n romanPrintString asUppercase) put:n]

then I can do (in a doIt, but not in compiled code):

   |a b|
   a := MMXIV.
   b := V.
   a + b

-> 2019

Notice: the 101 chars includes whitespace; actually it can be done with 87 chars.
Also notice, when define in the global Smalltalk namespace, I'd see those constants also in compiled code.

Version 2:

Use a methodWrapper hook, which allows for any existing code to be wrapped without recompiling. The following wraps the Parser's tokenizer to look for a roman identifier to be scanned and makes it an integer. The tricky part is to dynamically detect if the calling context is from the roman empire or not. This is done using a query signal (which is technically a proceedable exception):

define the query:

InRomanScope := QuerySignal new defaultAnswer:false.

So we can ask at any time ("InRomanScope query") to get false by default.

Then wrap the scanner's checkIdentifier method:

MessageTracer 
    wrapMethod:(Scanner compiledMethodAt:#checkForKeyword:)
    onEntry:nil
    onExit:[:ctx :ret |
        InRomanScope query ifTrue:[
            |scanner string token n|

            scanner := ctx receiver.
            string := ctx argAt:1.
            (n := Integer readFromRomanString:string onError:nil) notNil
            ifTrue:[
                scanner "/ hack; there is no setter for those two
                    instVarNamed:'tokenType' put:#Integer;
                    instVarNamed:'tokenValue' put:n.
                true
            ] ifFalse:[
                ret
            ].
        ] ifFalse:[
            ret
        ]
    ].

Now the scanner works as usual, unless we are in the roman empire:

InRomanScope answer:true do:[
    (Parser evaluate:'MMDXXV') printCR.
].

-> 2525

we can even compile code:

Compiler 
    compile:'
        inTheYear2525
            ^ MMDXXV
    '
    forClass:Integer.

nice try; but this fails with a syntax error (which is exactly what we want). However, in the roman empire, we CAN compile:

InRomanScope answer:true do:[

    Compiler 
        compile:'
            inTheYear2525
                ^ MMDXXV
        '
        forClass:Integer.
]

and now, we can ask any integer (sending that message) from inside and outside of Rome:

(1000 factorial) inTheYear2525

-> 2525

blabla999
la source
Nice to see Smalltalk!
4

Haskell, using meta-programming in Template Haskell and roman-numerals:

{-# LANGUAGE TemplateHaskell #-}
import Data.Char (toLower)
import Language.Haskell.TH
import Text.Numeral.Roman

$( mapM (\n -> funD (mkName . map toLower . toRoman $ n)
                    [ clause [] (normalB [| n |]) []]) $ [1..1000 :: Int] )

main = print xlii

Haskell reserves identifiers starting with upper case letters for constructors, so I used lower-case.

Petr Pudlák
la source
4

J - 78 char

This only goes up to MMMCMXCIX = 3999, as with the other solutions.

(}.,;L:1{M`CDM`XLC`IVX('';&;:(_1,~3#.inv]){' ',[)&.>841,3#79bc5yuukh)=:}.i.4e3

Breaking it down (recall J is usually read from right to left, unless superseded by parentheses):

  • M`CDM`XLC`IVX - Four boxes of letters. We're going to use numeric arrays into index into these letters and build up subwords of Roman numerals.
  • 841,3#79bc5yuukh - This is the numeric data, tightly encoded.*
  • (_1,~3#.inv]) - This will decode the above data, by expanding in ternary and appending -1.
  • ('';&;:(...){' ',[)&.> - Pairing up the numbers on the left with the boxes on the right (&.>), decode the arrays of numbers and use them to index into the letters. We treat 0 as space by prepending a space character to the letter lists. This procedure builds lists of words like I II III IV V VI VII VIII IX and M MM MMM.
  • { - Take the Cartesian product of these four boxes full of words. Now we have a 4D array of all the Roman numerals.
  • }.,;L:1 - Run all that into a single 1D list of Roman numerals, and remove the empty string at the front because it would create an error. (L: is a rare sight in J golf! Usually there are not this many levels of boxing involved.)
  • }.i.4e3 - The integers from 0 to 4000, excluding the endpoints.
  • Finally, we put everything together with a global assignment =:. J allows you to have a boxed list of names on the LHS, as a form of computed multiple assignment, so this works out fine.

Now the J namespace is full of variables representing Roman numerals.

   XCIX
99
   MMCDLXXVIII
2478
   V * LXIII   NB. 5*63
315
   #4!:1]0     NB. How many variables are now defined in the J namespace?
3999

* I need the number 2933774030998 to later be read in base 3. It so happens that I can express it in base 79 using digits no greater than 30, which is good because J can only understand digits up to 35 (0-9 and then a-z). This saves 3 characters over decimal.

algorithmshark
la source
3

Python

The Idea is simple as the other answers. But Just to be neat and not to pollute the global namespace, a context manager is used. This also imposes the restriction, that you need to declare before hand, the extent of Roman numerical you are planning to use.

Note Just to keep it simple, and not to reinvent the wheel, I have utilized the Roman python package

Implementation

class Roman(object):
    memo = [0]
    def __init__(self, hi):
        import rome
        if hi <= len(RomanNumericals.memo):
            self.romans = Roman.memo[0:hi]
        else:
            Roman.memo += [str(rome.Roman(i))
                    for i in range(len(Roman.memo),
                            hi+1)]
            self.romans = Roman.memo
    def __enter__(self):
        from copy import copy
        self.saved_globals = copy(globals())
        globals().update((v,k) for k,v in enumerate(self.romans[1:], 1))
    def __exit__(self,*args ):
        globals().clear()
        globals().update(self.saved_globals)

Demo

with Roman(5):
    with Roman(10):
        print X
    print V
    print X


10
5

Traceback (most recent call last):
  File "<pyshell#311>", line 5, in <module>
    print X
NameError: name 'X' is not defined
Abhijit
la source
3

Python

This is possibly the simplest solution using Python:

ns = [1000,900,500,400,100,90,50,40,10,9,5,4,1]
ls = 'M CM D CD C XC L XL X IX V IV I'.split()
for N in range(1, 4000):
    r=''
    p=N
    for n,l in zip(ns,ls):
        while p>=n:
            r+=l
            p-=n
    exec('%s=%d'%(r,N))


i, j = XIX, MCXIV
print i, j
Dhara
la source
3
Better to use globals()[var] = value than exec().
Ramchandra Apte
3

D

using D's compile time function evaluation

import std.algorithm;
string numerals(){
    auto s = cartesianProduct(["","I","II","III","IV","V","VI","VII","VIII","IX"], 
                              ["","C","CC","CCC","CD","D","DC","DCC","DCCC","CM"],
                              ["","X","XX","XXX","XL","L","LX","LXX","LXXX","XC"],
                              ["","M","MM","MMM"]);
    s.popFront();//skip first
    char[] result="enum ";
    int i=1;
    foreach(p;s){
        result~=p[3]~p[2]~p[1]~p[0]~"="~i++~",";
    }
    result[$-1]=';';//replace last , with a ;
    return result.idup;
}
mixin(numerals());
ratchet freak
la source
3

APL (Dyalog APL), 77 bytes

Prompts for Roman numeral maximum length and defines all variables.

t'IVXLCDM',⊂⍬
{⍎⍕⍵'←',+/2(⊣ׯ1*<)/0,⍨(∊1 5∘ר10*⍳4)[t⍳⍵]}¨,/t[⍉8⊥⍣¯1⍳¯1+8*⎕]

t←t gets

'IVXLCDM', Roman chars followed by

 an enclosed

 empty list

t[] index t with…

 the transposed (to get the right order)

8⊥⍣¯1 appropriate width base-eight representation of

 the first n indices, where n is

¯1+ one less than

8*⎕ eight to the power of numeric input

,/ flatten rows (each representation)

{ apply the following anonymous function on each representation…

()[t⍳⍵] corresponding to the positions of the argument's items in t, select from…

   the enlisted

  1 5∘ר one and five times each of

  10* ten to the power of

  ⍳4 zero through three

0,⍨ append zero

2(…)/ on each length-two sliding window, apply the following anonymous function train…

  ⊣× the left argument times

  ¯1* negative one to the power of

  < whether the left argument is less than the right argument

+/ sum

⍵'←', prepend the argument (the Roman numeral) and an assignment arrow

 format (to flatten and convert the number to text)

 execute that (makes the assignment outside the anonymous function)

Try it online! (using max-length 5)

Adám
la source
2

PHP

There a several rules for valid roman numbers

  1. Write the greatest value befor the lower values

  2. Subtract only [I,X,C] before the next 2 greater values

  3. Subtract double [I,X,C] before the next 2 greater values

  4. Subtract double [I,X,C] before the greater values

  5. Combine 4+5

Online Version

Step 1 Create the rules

{"M":1000,"IM":999,"IIM":998,"XM":990,"XXM":980,"CM":900,"CCM":800,"D":500,"ID":499,"IID":498,"XD":490,"XXD":480,"CD":400,"C":100,"IC":99,"IIC":98,"XC":90,"XXC":80,"L":50,"IL":49,"IIL":48,"XL":40,"X":10,"IX":9,"IIX":8,"V":5,"IV":4,"I":1}

is the JSON output for all valid roman numbers

$rule_sub_all=$rule_add=$rule_sub_simple=["M"=>1000,"D"=>500,"C"=>100,"L"=>50,"X"=>10,"V"=>5,"I"=>1];
foreach(["I","X","C"]as$roman_letter){
    $rule_sub_simple[$roman_letter.array_search($value=$rule_add[$roman_letter]*5,$rule_add)]=$value-$rule_add[$roman_letter];
    $rule_sub_simple[$roman_letter.array_search($value=$rule_add[$roman_letter]*10,$rule_add)]=$value-$rule_add[$roman_letter];
}
$rule_sub_lower_one=$rule_sub_double=$rule_sub_simple;
foreach(["I","X","C"]as$roman_letter){
    $rule_sub_double[$roman_letter.$roman_letter.array_search($value=$rule_add[$roman_letter]*10,$rule_add)]=$value-2*$rule_add[$roman_letter];

foreach($rule_add as$key=>$value){
    if($value>$rule_add[$roman_letter])$rule_sub_all[$roman_letter.$key]=$value-$rule_add[$roman_letter];
    if($value>5*$rule_add[$roman_letter])$rule_sub_all[$roman_letter.$roman_letter.$key]=$value-2*$rule_add[$roman_letter];
    if($value>10*$rule_add[$roman_letter])$rule_sub_lower_one[$roman_letter.$key]=$value-$rule_add[$roman_letter];
    }
}
arsort($rule_sub_all);
arsort($rule_sub_lower_one);
arsort($rule_sub_double);
arsort($rule_sub_simple);

Step 2 Make lists for all rules till 3999

$array_sub_lower_one=$array_sub_double=$array_sub_all=$array_add=$array_sub_simple=[];
for($i=1;$i<4000;$i++){
    $number_sub_all=$number_add=$number_sub_simple=$number_sub_double=$number_sub_lower_one=$i;
    $roman_letter_sub_all=$roman_letter_add=$roman_letter_sub_simple=$roman_letter_sub_double=$roman_letter_sub_lower_one="";
    foreach($rule_sub_all as$key=>$value){
        $roman_letter_sub_all.=str_repeat($key,$d=$number_sub_all/$value^0);$number_sub_all-=$value*$d;
        if(in_array($value,$rule_sub_lower_one)){
        $roman_letter_sub_lower_one.=str_repeat($key,$d=$number_sub_lower_one/$value^0);$number_sub_lower_one-=$value*$d;}    
        if(in_array($value,$rule_add)){
        $roman_letter_add.=str_repeat($key,$d=$number_add/$value^0);$number_add-=$value*$d;}
        if(in_array($value,$rule_sub_simple)){
        $roman_letter_sub_simple.=str_repeat($key,$d=$number_sub_simple/$value^0);$number_sub_simple-=$value*$d;}
        if(in_array($value,$rule_sub_double)){
        $roman_letter_sub_double.=str_repeat($key,$d=$number_sub_double/$value^0);$number_sub_double-=$value*$d;}
     }
    $array_sub_lower_one[$roman_letter_sub_lower_one]=$i;   
    $array_sub_all[$roman_letter_sub_all]=$i;
    $array_add[$roman_letter_add]=$i;
    $array_sub_simple[$roman_letter_sub_simple]=$i;
    $array_sub_double[$roman_letter_sub_double]=$i;
}

Step 3 Create constants

Combine all lists and define constants

foreach(array_merge($array_add,$array_sub_simple,$array_sub_lower_one,$array_sub_double,$array_sub_all)as$key=>$value){ define($key,$value); }

Output

In the example mutiply two valid versions of the number 8

echo IIX *  VIII;
Jörg Hülsermann
la source
Nice, but how do I use this? I'm not fluent in PHP; Could you please give an example of how this enables me to write Roman numerals in the code?
daniero
@Daniero Now the code should work
Jörg Hülsermann
Ah, that's better :)
daniero
1

Rebol

Rebol []

roman-dialect: func [
    {Dialect which allows Roman numerals as numbers (integer!)}
    block [block!]
    /local word w m1 m2 when-in-rome rule word-rule block-rule
  ][
    when-in-rome: does [
        if roman? w: to-string word [change/part m1 roman-to-integer w m2]
    ]

    word-rule:  [m1: copy word word! m2: (when-in-rome)]
    block-rule: [m1: any-block! (parse m1/1 rule)]
    rule:       [any [block-rule | word-rule | skip]]

    parse block rule
    do block
]

; couple of helper functions used in above parse rules

roman-to-integer: func [roman /local r eval] [
    r: [IV 4 IX 9 XL 40 XC 90 CD 400 CM 900 I 1 V 5 X 10 L 50 C 100 D 500 M 1000]
    eval: join "0" copy roman
    foreach [k v] r [replace/all eval k join " + " v]
    do replace/all to-block eval '+ '+
]

roman?: func [s /local roman-chars] [
    roman-char: charset "IVXLCDM"
    parse/case s [some roman-char]
]


Example

roman-dialect [
    m: X + V
    print m
    print M + m  ; doesn't confuse the variable m with Roman Numeral M
    if now/year = MMXIV [print "Yes it is 2014"]
    for n I V I [
        print [rejoin [n "+" X "="] n + X]
    ]
]

Output:

15

1015

Yes it is 2014

1+10= 11

2+10= 12

3+10= 13

4+10= 14

5+10= 15


Disclaimer: I'm sure there are other (and probably better!) ways of doing this in Rebol as well.

PS. My roman-to-integer function is a transliteration of histocrat's nice Ruby algorithm for converting Roman Numeral string into a number. Returned with thanks! +1

draegtun
la source
1

Lua

local g={}
setmetatable(_G,g)
local romans = {I = 1,
                V = 5,
                X = 10,
                L = 50,
                C = 100,
                D = 500,
                M = 1000}
local larger = {    -- Precalced, for faster computing.
                I = "VXLCDM",
                V = "XLCDM",
                X = "LCDM",
                L = "CDM",
                C = "DM",
                D = "M",
                M = " " -- A space will never be found, and it prevents the pattern matcher from erroring.
}
local storedRomans = {}
function g:__index(key)
    if storedRomans[key] then
        return storedRomans[key]
    end
    if key:match"^[IVXLCDM]+$" then
        local n = 0
        local i = 1
        for s in key:gmatch"." do
            local N = romans[s]
            if key:find('['..larger[s]..']',i) then
                n = n - N
            else
                n = n + N
            end
            i = i + 1
        end
        storedRomans[key] = n
        return n
    end
end

This effects the metatable of the global table, giving it a new index function. When a global variable which only contains roman numerals is asked for, eg XVII, it parses it.

Easy to test;

print(XVII) -- 42
print(VI)   -- 6
print(III)  -- 3
print(MMM)  -- 3000

Try it online!

ATaco
la source
1

VBA, 204 bytes

A declared subroutine which takes no input, and when run, creates the publicly accessible Enum, R, which contains all of the Roman Numeral values. These values may be used directly, without referencing the Enum.

Enum hold values from 1 to 3999.

Note: Terminal "s on lines 3 and 7 are included for syntax highlighting only, and do not contribute to the bytecount

Public Sub i
Set c=ThisWorkbook.VBProject.VBComponents.Add(1).CodeModule
c.AddFromString"Public Enum R"
For n=1To 3999
c.AddFromString WorksheetFunction.Roman(n)&"="&n
Next
c.AddFromString"End Enum"
End Sub

Ungolfed and Explained

Public Sub InitializeRomanNumerals()
    Dim c As CodeModule                                            ''  Dim CodeModule
    Set c=ThisWorkbook.VBProject.VBComponents.Add(1).CodeModule    ''  Create Module
    Let c.Parent.Name = "RomanNumeral_Module"                      ''  Name the Module
    Call c.AddFromString("Public Enum RomanNumerals")              ''  Declare the Enum
        For n=1To 3999Step 1                                       ''  Iter from 1 to 3999
            Call c.AddFromString(WorksheetFunction.Roman(n)&"="&n) ''  Add the Roman
                                                                   ''  Numeral to Enum
        Next n                                                     ''  Loop
    Call c.AddFromString("End Enum")                               ''  End The Enum
End Sub
Taylor Scott
la source