Méthode d'itération Jacobi Python
n = int(input("Enter number of unknowns: "))
data = []
print('Enter Augmented Matrix Coefficients:')
for i in range(n):
row = []
for j in range(n+1):
value = float(input( 'data['+str(i)+']['+ str(j)+']='))
row.append(value)
data.append(row)
te = int(input("Enter tolerable Error : "))
x = []
accuracy = []
acceptance = []
# Initial Guess 0
for __ in range(n):
x.append(0)
accuracy.append(0)
acceptance.append("Not Accepted")
while ("Not Accepted" in acceptance):
for i in range(n):
rhs = data[i][-1]
i_coeff = data[i][i]
except_i = 0
for j in range(n):
if i != j:
except_i += data[i][j]*x[j]
x[i] = (rhs - except_i) / i_coeff
# for n = 3
# x[0] = (data[0][3]-(data[0][1]*x[1]+data[0][2]*x[2]))/data[0][0]
# x[1] = (data[1][3]-(data[1][0]*x[0]+data[1][2]*x[2]))/data[1][1]
# x[2] = (data[2][3]-(data[2][0]*x[0]+data[2][1]*x[1]))/data[2][2]
for i in range(n):
rhs = data[i][-1]
lhs = 0
for j in range(n):
lhs += data[i][j]*x[j]
accuracy[i] = abs(rhs-lhs)
# for n = 3
# accuracy[0] = data[0][3]-(data[0][0]*x[0]+data[0][1]*x[1]+data[0][2]*x[2])
# accuracy[1] = data[1][3]-(data[1][0]*x[0]+data[1][1]*x[1]+data[1][2]*x[2])
# accuracy[2] = data[2][3]-(data[2][0]*x[0]+data[2][1]*x[1]+data[2][2]*x[2])
for i in range(n):
if accuracy[i] <= te:
acceptance[i] = "Accepted"
# for n = 3
# if abs(accuracy[0])<=te:
# acceptance[0] = "Accepted"
# if abs(accuracy[1])<=te:
# acceptance[1] = "Accepted"
# if abs(accuracy[2])<=te:
# acceptance[2] = "Accepted"
print(x)
Muhammad Huzaifa Khan