Jupyter alpha optimal
ridge2 = Ridge(alpha = 4, normalize = True)
ridge2.fit(X_train, y_train) # Fit a ridge regression on the training data
pred2 = ridge2.predict(X_test) # Use this model to predict the test data
print(pd.Series(ridge2.coef_, index = X.columns)) # Print coefficients
print(mean_squared_error(y_test, pred2)) # Calculate the test MSE
Graceful Guanaco