“Définir les utilitaires Resizer apprenables” Réponses codées

Définir les utilitaires Resizer apprenables

def conv_block(x, filters, kernel_size, strides, activation=layers.LeakyReLU(0.2)):
    x = layers.Conv2D(filters, kernel_size, strides, padding="same", use_bias=False)(x)
    x = layers.BatchNormalization()(x)
    if activation:
        x = activation(x)
    return x


def res_block(x):
    inputs = x
    x = conv_block(x, 16, 3, 1)
    x = conv_block(x, 16, 3, 1, activation=None)
    return layers.Add()([inputs, x])


def get_learnable_resizer(filters=16, num_res_blocks=1, interpolation=INTERPOLATION):
    inputs = layers.Input(shape=[None, None, 3])

    # First, perform naive resizing.
    naive_resize = layers.Resizing(
        *TARGET_SIZE, interpolation=interpolation
    )(inputs)

    # First convolution block without batch normalization.
    x = layers.Conv2D(filters=filters, kernel_size=7, strides=1, padding="same")(inputs)
    x = layers.LeakyReLU(0.2)(x)

    # Second convolution block with batch normalization.
    x = layers.Conv2D(filters=filters, kernel_size=1, strides=1, padding="same")(x)
    x = layers.LeakyReLU(0.2)(x)
    x = layers.BatchNormalization()(x)

    # Intermediate resizing as a bottleneck.
    bottleneck = layers.Resizing(
        *TARGET_SIZE, interpolation=interpolation
    )(x)

    # Residual passes.
    for _ in range(num_res_blocks):
        x = res_block(bottleneck)

    # Projection.
    x = layers.Conv2D(
        filters=filters, kernel_size=3, strides=1, padding="same", use_bias=False
    )(x)
    x = layers.BatchNormalization()(x)

    # Skip connection.
    x = layers.Add()([bottleneck, x])

    # Final resized image.
    x = layers.Conv2D(filters=3, kernel_size=7, strides=1, padding="same")(x)
    final_resize = layers.Add()([naive_resize, x])

    return tf.keras.Model(inputs, final_resize, name="learnable_resizer")


learnable_resizer = get_learnable_resizer()
Akshay R

Définir les utilitaires Resizer apprenables

def conv_block(x, filters, kernel_size, strides, activation=layers.LeakyReLU(0.2)):
    x = layers.Conv2D(filters, kernel_size, strides, padding="same", use_bias=False)(x)
    x = layers.BatchNormalization()(x)
    if activation:
        x = activation(x)
    return x


def res_block(x):
    inputs = x
    x = conv_block(x, 16, 3, 1)
    x = conv_block(x, 16, 3, 1, activation=None)
    return layers.Add()([inputs, x])


def get_learnable_resizer(filters=16, num_res_blocks=1, interpolation=INTERPOLATION):
    inputs = layers.Input(shape=[None, None, 3])

    # First, perform naive resizing.
    naive_resize = layers.Resizing(
        *TARGET_SIZE, interpolation=interpolation
    )(inputs)

    # First convolution block without batch normalization.
    x = layers.Conv2D(filters=filters, kernel_size=7, strides=1, padding="same")(inputs)
    x = layers.LeakyReLU(0.2)(x)

    # Second convolution block with batch normalization.
    x = layers.Conv2D(filters=filters, kernel_size=1, strides=1, padding="same")(x)
    x = layers.LeakyReLU(0.2)(x)
    x = layers.BatchNormalization()(x)

    # Intermediate resizing as a bottleneck.
    bottleneck = layers.Resizing(
        *TARGET_SIZE, interpolation=interpolation
    )(x)

    # Residual passes.
    for _ in range(num_res_blocks):
        x = res_block(bottleneck)

    # Projection.
    x = layers.Conv2D(
        filters=filters, kernel_size=3, strides=1, padding="same", use_bias=False
    )(x)
    x = layers.BatchNormalization()(x)

    # Skip connection.
    x = layers.Add()([bottleneck, x])

    # Final resized image.
    x = layers.Conv2D(filters=3, kernel_size=7, strides=1, padding="same")(x)
    final_resize = layers.Add()([naive_resize, x])

    return tf.keras.Model(inputs, final_resize, name="learnable_resizer")


learnable_resizer = get_learnable_resizer()
Akshay R

Définir les utilitaires Resizer apprenables

def conv_block(x, filters, kernel_size, strides, activation=layers.LeakyReLU(0.2)):
    x = layers.Conv2D(filters, kernel_size, strides, padding="same", use_bias=False)(x)
    x = layers.BatchNormalization()(x)
    if activation:
        x = activation(x)
    return x


def res_block(x):
    inputs = x
    x = conv_block(x, 16, 3, 1)
    x = conv_block(x, 16, 3, 1, activation=None)
    return layers.Add()([inputs, x])


def get_learnable_resizer(filters=16, num_res_blocks=1, interpolation=INTERPOLATION):
    inputs = layers.Input(shape=[None, None, 3])

    # First, perform naive resizing.
    naive_resize = layers.Resizing(
        *TARGET_SIZE, interpolation=interpolation
    )(inputs)

    # First convolution block without batch normalization.
    x = layers.Conv2D(filters=filters, kernel_size=7, strides=1, padding="same")(inputs)
    x = layers.LeakyReLU(0.2)(x)

    # Second convolution block with batch normalization.
    x = layers.Conv2D(filters=filters, kernel_size=1, strides=1, padding="same")(x)
    x = layers.LeakyReLU(0.2)(x)
    x = layers.BatchNormalization()(x)

    # Intermediate resizing as a bottleneck.
    bottleneck = layers.Resizing(
        *TARGET_SIZE, interpolation=interpolation
    )(x)

    # Residual passes.
    for _ in range(num_res_blocks):
        x = res_block(bottleneck)

    # Projection.
    x = layers.Conv2D(
        filters=filters, kernel_size=3, strides=1, padding="same", use_bias=False
    )(x)
    x = layers.BatchNormalization()(x)

    # Skip connection.
    x = layers.Add()([bottleneck, x])

    # Final resized image.
    x = layers.Conv2D(filters=3, kernel_size=7, strides=1, padding="same")(x)
    final_resize = layers.Add()([naive_resize, x])

    return tf.keras.Model(inputs, final_resize, name="learnable_resizer")


learnable_resizer = get_learnable_resizer()
Akshay R

Définir les utilitaires Resizer apprenables

def conv_block(x, filters, kernel_size, strides, activation=layers.LeakyReLU(0.2)):
    x = layers.Conv2D(filters, kernel_size, strides, padding="same", use_bias=False)(x)
    x = layers.BatchNormalization()(x)
    if activation:
        x = activation(x)
    return x


def res_block(x):
    inputs = x
    x = conv_block(x, 16, 3, 1)
    x = conv_block(x, 16, 3, 1, activation=None)
    return layers.Add()([inputs, x])


def get_learnable_resizer(filters=16, num_res_blocks=1, interpolation=INTERPOLATION):
    inputs = layers.Input(shape=[None, None, 3])

    # First, perform naive resizing.
    naive_resize = layers.Resizing(
        *TARGET_SIZE, interpolation=interpolation
    )(inputs)

    # First convolution block without batch normalization.
    x = layers.Conv2D(filters=filters, kernel_size=7, strides=1, padding="same")(inputs)
    x = layers.LeakyReLU(0.2)(x)

    # Second convolution block with batch normalization.
    x = layers.Conv2D(filters=filters, kernel_size=1, strides=1, padding="same")(x)
    x = layers.LeakyReLU(0.2)(x)
    x = layers.BatchNormalization()(x)

    # Intermediate resizing as a bottleneck.
    bottleneck = layers.Resizing(
        *TARGET_SIZE, interpolation=interpolation
    )(x)

    # Residual passes.
    for _ in range(num_res_blocks):
        x = res_block(bottleneck)

    # Projection.
    x = layers.Conv2D(
        filters=filters, kernel_size=3, strides=1, padding="same", use_bias=False
    )(x)
    x = layers.BatchNormalization()(x)

    # Skip connection.
    x = layers.Add()([bottleneck, x])

    # Final resized image.
    x = layers.Conv2D(filters=3, kernel_size=7, strides=1, padding="same")(x)
    final_resize = layers.Add()([naive_resize, x])

    return tf.keras.Model(inputs, final_resize, name="learnable_resizer")


learnable_resizer = get_learnable_resizer()
Akshay R

Définir les utilitaires Resizer apprenables

def conv_block(x, filters, kernel_size, strides, activation=layers.LeakyReLU(0.2)):
    x = layers.Conv2D(filters, kernel_size, strides, padding="same", use_bias=False)(x)
    x = layers.BatchNormalization()(x)
    if activation:
        x = activation(x)
    return x


def res_block(x):
    inputs = x
    x = conv_block(x, 16, 3, 1)
    x = conv_block(x, 16, 3, 1, activation=None)
    return layers.Add()([inputs, x])


def get_learnable_resizer(filters=16, num_res_blocks=1, interpolation=INTERPOLATION):
    inputs = layers.Input(shape=[None, None, 3])

    # First, perform naive resizing.
    naive_resize = layers.Resizing(
        *TARGET_SIZE, interpolation=interpolation
    )(inputs)

    # First convolution block without batch normalization.
    x = layers.Conv2D(filters=filters, kernel_size=7, strides=1, padding="same")(inputs)
    x = layers.LeakyReLU(0.2)(x)

    # Second convolution block with batch normalization.
    x = layers.Conv2D(filters=filters, kernel_size=1, strides=1, padding="same")(x)
    x = layers.LeakyReLU(0.2)(x)
    x = layers.BatchNormalization()(x)

    # Intermediate resizing as a bottleneck.
    bottleneck = layers.Resizing(
        *TARGET_SIZE, interpolation=interpolation
    )(x)

    # Residual passes.
    for _ in range(num_res_blocks):
        x = res_block(bottleneck)

    # Projection.
    x = layers.Conv2D(
        filters=filters, kernel_size=3, strides=1, padding="same", use_bias=False
    )(x)
    x = layers.BatchNormalization()(x)

    # Skip connection.
    x = layers.Add()([bottleneck, x])

    # Final resized image.
    x = layers.Conv2D(filters=3, kernel_size=7, strides=1, padding="same")(x)
    final_resize = layers.Add()([naive_resize, x])

    return tf.keras.Model(inputs, final_resize, name="learnable_resizer")


learnable_resizer = get_learnable_resizer()
Akshay R

Définir les utilitaires Resizer apprenables

def conv_block(x, filters, kernel_size, strides, activation=layers.LeakyReLU(0.2)):
    x = layers.Conv2D(filters, kernel_size, strides, padding="same", use_bias=False)(x)
    x = layers.BatchNormalization()(x)
    if activation:
        x = activation(x)
    return x


def res_block(x):
    inputs = x
    x = conv_block(x, 16, 3, 1)
    x = conv_block(x, 16, 3, 1, activation=None)
    return layers.Add()([inputs, x])


def get_learnable_resizer(filters=16, num_res_blocks=1, interpolation=INTERPOLATION):
    inputs = layers.Input(shape=[None, None, 3])

    # First, perform naive resizing.
    naive_resize = layers.Resizing(
        *TARGET_SIZE, interpolation=interpolation
    )(inputs)

    # First convolution block without batch normalization.
    x = layers.Conv2D(filters=filters, kernel_size=7, strides=1, padding="same")(inputs)
    x = layers.LeakyReLU(0.2)(x)

    # Second convolution block with batch normalization.
    x = layers.Conv2D(filters=filters, kernel_size=1, strides=1, padding="same")(x)
    x = layers.LeakyReLU(0.2)(x)
    x = layers.BatchNormalization()(x)

    # Intermediate resizing as a bottleneck.
    bottleneck = layers.Resizing(
        *TARGET_SIZE, interpolation=interpolation
    )(x)

    # Residual passes.
    for _ in range(num_res_blocks):
        x = res_block(bottleneck)

    # Projection.
    x = layers.Conv2D(
        filters=filters, kernel_size=3, strides=1, padding="same", use_bias=False
    )(x)
    x = layers.BatchNormalization()(x)

    # Skip connection.
    x = layers.Add()([bottleneck, x])

    # Final resized image.
    x = layers.Conv2D(filters=3, kernel_size=7, strides=1, padding="same")(x)
    final_resize = layers.Add()([naive_resize, x])

    return tf.keras.Model(inputs, final_resize, name="learnable_resizer")


learnable_resizer = get_learnable_resizer()
Akshay R

Définir les utilitaires Resizer apprenables

def conv_block(x, filters, kernel_size, strides, activation=layers.LeakyReLU(0.2)):
    x = layers.Conv2D(filters, kernel_size, strides, padding="same", use_bias=False)(x)
    x = layers.BatchNormalization()(x)
    if activation:
        x = activation(x)
    return x


def res_block(x):
    inputs = x
    x = conv_block(x, 16, 3, 1)
    x = conv_block(x, 16, 3, 1, activation=None)
    return layers.Add()([inputs, x])


def get_learnable_resizer(filters=16, num_res_blocks=1, interpolation=INTERPOLATION):
    inputs = layers.Input(shape=[None, None, 3])

    # First, perform naive resizing.
    naive_resize = layers.Resizing(
        *TARGET_SIZE, interpolation=interpolation
    )(inputs)

    # First convolution block without batch normalization.
    x = layers.Conv2D(filters=filters, kernel_size=7, strides=1, padding="same")(inputs)
    x = layers.LeakyReLU(0.2)(x)

    # Second convolution block with batch normalization.
    x = layers.Conv2D(filters=filters, kernel_size=1, strides=1, padding="same")(x)
    x = layers.LeakyReLU(0.2)(x)
    x = layers.BatchNormalization()(x)

    # Intermediate resizing as a bottleneck.
    bottleneck = layers.Resizing(
        *TARGET_SIZE, interpolation=interpolation
    )(x)

    # Residual passes.
    for _ in range(num_res_blocks):
        x = res_block(bottleneck)

    # Projection.
    x = layers.Conv2D(
        filters=filters, kernel_size=3, strides=1, padding="same", use_bias=False
    )(x)
    x = layers.BatchNormalization()(x)

    # Skip connection.
    x = layers.Add()([bottleneck, x])

    # Final resized image.
    x = layers.Conv2D(filters=3, kernel_size=7, strides=1, padding="same")(x)
    final_resize = layers.Add()([naive_resize, x])

    return tf.keras.Model(inputs, final_resize, name="learnable_resizer")


learnable_resizer = get_learnable_resizer()
Akshay R

Définir les utilitaires Resizer apprenables

def conv_block(x, filters, kernel_size, strides, activation=layers.LeakyReLU(0.2)):
    x = layers.Conv2D(filters, kernel_size, strides, padding="same", use_bias=False)(x)
    x = layers.BatchNormalization()(x)
    if activation:
        x = activation(x)
    return x


def res_block(x):
    inputs = x
    x = conv_block(x, 16, 3, 1)
    x = conv_block(x, 16, 3, 1, activation=None)
    return layers.Add()([inputs, x])


def get_learnable_resizer(filters=16, num_res_blocks=1, interpolation=INTERPOLATION):
    inputs = layers.Input(shape=[None, None, 3])

    # First, perform naive resizing.
    naive_resize = layers.Resizing(
        *TARGET_SIZE, interpolation=interpolation
    )(inputs)

    # First convolution block without batch normalization.
    x = layers.Conv2D(filters=filters, kernel_size=7, strides=1, padding="same")(inputs)
    x = layers.LeakyReLU(0.2)(x)

    # Second convolution block with batch normalization.
    x = layers.Conv2D(filters=filters, kernel_size=1, strides=1, padding="same")(x)
    x = layers.LeakyReLU(0.2)(x)
    x = layers.BatchNormalization()(x)

    # Intermediate resizing as a bottleneck.
    bottleneck = layers.Resizing(
        *TARGET_SIZE, interpolation=interpolation
    )(x)

    # Residual passes.
    for _ in range(num_res_blocks):
        x = res_block(bottleneck)

    # Projection.
    x = layers.Conv2D(
        filters=filters, kernel_size=3, strides=1, padding="same", use_bias=False
    )(x)
    x = layers.BatchNormalization()(x)

    # Skip connection.
    x = layers.Add()([bottleneck, x])

    # Final resized image.
    x = layers.Conv2D(filters=3, kernel_size=7, strides=1, padding="same")(x)
    final_resize = layers.Add()([naive_resize, x])

    return tf.keras.Model(inputs, final_resize, name="learnable_resizer")


learnable_resizer = get_learnable_resizer()
Akshay R

Définir les utilitaires Resizer apprenables

def conv_block(x, filters, kernel_size, strides, activation=layers.LeakyReLU(0.2)):
    x = layers.Conv2D(filters, kernel_size, strides, padding="same", use_bias=False)(x)
    x = layers.BatchNormalization()(x)
    if activation:
        x = activation(x)
    return x


def res_block(x):
    inputs = x
    x = conv_block(x, 16, 3, 1)
    x = conv_block(x, 16, 3, 1, activation=None)
    return layers.Add()([inputs, x])


def get_learnable_resizer(filters=16, num_res_blocks=1, interpolation=INTERPOLATION):
    inputs = layers.Input(shape=[None, None, 3])

    # First, perform naive resizing.
    naive_resize = layers.Resizing(
        *TARGET_SIZE, interpolation=interpolation
    )(inputs)

    # First convolution block without batch normalization.
    x = layers.Conv2D(filters=filters, kernel_size=7, strides=1, padding="same")(inputs)
    x = layers.LeakyReLU(0.2)(x)

    # Second convolution block with batch normalization.
    x = layers.Conv2D(filters=filters, kernel_size=1, strides=1, padding="same")(x)
    x = layers.LeakyReLU(0.2)(x)
    x = layers.BatchNormalization()(x)

    # Intermediate resizing as a bottleneck.
    bottleneck = layers.Resizing(
        *TARGET_SIZE, interpolation=interpolation
    )(x)

    # Residual passes.
    for _ in range(num_res_blocks):
        x = res_block(bottleneck)

    # Projection.
    x = layers.Conv2D(
        filters=filters, kernel_size=3, strides=1, padding="same", use_bias=False
    )(x)
    x = layers.BatchNormalization()(x)

    # Skip connection.
    x = layers.Add()([bottleneck, x])

    # Final resized image.
    x = layers.Conv2D(filters=3, kernel_size=7, strides=1, padding="same")(x)
    final_resize = layers.Add()([naive_resize, x])

    return tf.keras.Model(inputs, final_resize, name="learnable_resizer")


learnable_resizer = get_learnable_resizer()
Akshay R

Définir les utilitaires Resizer apprenables

def conv_block(x, filters, kernel_size, strides, activation=layers.LeakyReLU(0.2)):
    x = layers.Conv2D(filters, kernel_size, strides, padding="same", use_bias=False)(x)
    x = layers.BatchNormalization()(x)
    if activation:
        x = activation(x)
    return x


def res_block(x):
    inputs = x
    x = conv_block(x, 16, 3, 1)
    x = conv_block(x, 16, 3, 1, activation=None)
    return layers.Add()([inputs, x])


def get_learnable_resizer(filters=16, num_res_blocks=1, interpolation=INTERPOLATION):
    inputs = layers.Input(shape=[None, None, 3])

    # First, perform naive resizing.
    naive_resize = layers.Resizing(
        *TARGET_SIZE, interpolation=interpolation
    )(inputs)

    # First convolution block without batch normalization.
    x = layers.Conv2D(filters=filters, kernel_size=7, strides=1, padding="same")(inputs)
    x = layers.LeakyReLU(0.2)(x)

    # Second convolution block with batch normalization.
    x = layers.Conv2D(filters=filters, kernel_size=1, strides=1, padding="same")(x)
    x = layers.LeakyReLU(0.2)(x)
    x = layers.BatchNormalization()(x)

    # Intermediate resizing as a bottleneck.
    bottleneck = layers.Resizing(
        *TARGET_SIZE, interpolation=interpolation
    )(x)

    # Residual passes.
    for _ in range(num_res_blocks):
        x = res_block(bottleneck)

    # Projection.
    x = layers.Conv2D(
        filters=filters, kernel_size=3, strides=1, padding="same", use_bias=False
    )(x)
    x = layers.BatchNormalization()(x)

    # Skip connection.
    x = layers.Add()([bottleneck, x])

    # Final resized image.
    x = layers.Conv2D(filters=3, kernel_size=7, strides=1, padding="same")(x)
    final_resize = layers.Add()([naive_resize, x])

    return tf.keras.Model(inputs, final_resize, name="learnable_resizer")


learnable_resizer = get_learnable_resizer()
Akshay R

Réponses similaires à “Définir les utilitaires Resizer apprenables”

Questions similaires à “Définir les utilitaires Resizer apprenables”

Parcourir les réponses de code populaires par langue

Parcourir d'autres langages de code